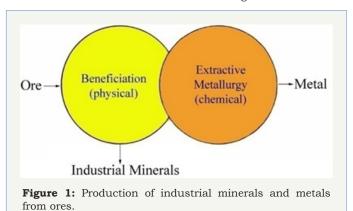
Mini Review

ISSN 2578-0255

Aspects Min Miner Sci

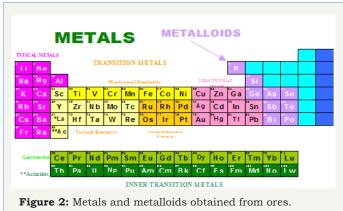
Metals from Ores: An Introduction

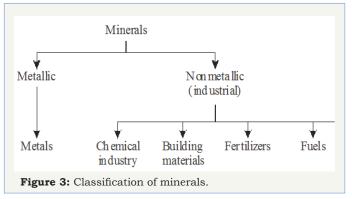
Fathi Habashi*


Department of Mining, Laval University, Canada

*Corresponding author: Fathi Habashi, Department of Mining, Metallurgical and Materials Engineering, Laval University, Quebec City, Canada Submission: ☐ October 09, 2017; Published: ☐ December 11, 2017

Introduction


A mineral is a naturally occurring substance having a definite chemical composition, constant physical properties, and a characteristic crystalline form. Ores are a mixture of minerals: they are processed to yield an industrial mineral or treated chemically to yield a single or several metals. Ores that are generally processed for only a single metal are those of iron, aluminium, chromium, tin, mercury, manganese, tungsten, and some ores of copper. Gold ores may yield only gold, but silver is a common associate. Nickel ores are always associated with cobalt, while lead and zinc always occur together in ores. All other ores are complex yielding a number of metals.


Ores undergo a beneficiation process by physical methods before being treated by chemical methods to recover the metals. Beneficiation processes involve liberation of minerals by crushing and grinding then separation of the individual mineral by physical methods (gravity, magnetic, etc.) or physicochemical methods (flotation) Figure 1. Chemical methods involve hydrometallurgical, pyrometallurgical, and electrochemical methods. Metals and metalloids obtained from ores are shown in Figure 2.

Classification of Minerals

Minerals may be classified into two groups: metallic and non metallic. Metallic minerals are the chief raw materials for the manufacture of metals. Non metallic minerals which constitute about 75% of all the minerals, are so-called because they are not used for the manufacture of metals and also because of their lack of metallic lustre. Of these about 300 are used industrially in the chemical industry, in building materials, in fertilizers, as fuels, etc., and are known as the industrial minerals Figure 3.

A metallic mineral may be used for the production of a metal, or after a minor treatment for the production of refractoriness or pigments. For example Table 1. Bauxite, the main source of aluminium: 90% is used in the manufacture of the metal and 10% in the manufacture of refractoriness, abrasives, and chemicals. Chromate, the main mineral for chromium, is used for manufacturing certain refractoriness as well as chemicals for the tanning industry. Magnetite is used for iron production and as a black pigment. Zircon, the main zirconium mineral is used for the production of specialized refractoriness. Beryl, the main beryllium mineral, when occurring in large transparent crystals, is a gemstone. When a mineral is used for more than on purpose, then its grade

Volume 1 - Issue - 1

and the impurities present are the decisive factors in its utilization for metal production or otherwise. For example: Chromites ores [1]. These are classified into three grades: Metallurgical Ore with a high chromium content (minimum 68% chromium) and the chromium/iron ratio must not be less than 2.8/1, will be suitable for the manufacture of ferrochrome alloy or chromium metal.

Table 1: Metallic minerals for other uses than metal production.

Mineral	Metal Produced	Non-metallic Use
Bauxite	Al	Refractories
Chromite	Cr	Refractories, Chemicals
Magnetite	Fe	Pigment
Zircon	Zr	Refractories
Beryl	Be	Gemstone

Refractory Ore with a high aluminium oxide (the sum $\mathrm{Cr_2O_3}$ and $\mathrm{Al_2O_3}$ is more than 59%) would be suitable for the manufacture of refractoriness. Chemical Low-grade chromites, that are those with high iron content, are mainly used for the manufacture of dichromatic needed for the electroplating and tanning industry Table 2.

Table 2: Classification of chromite ores.

Grade	Specifications	Use
Metallurgical	68% Cr minimum	Production of ferrochrome alloy
Metantingical	Cr/Fe ratio <2.8/1	or chromium metal
Refractory	$Cr_2O_3 + Al_2O_3 \ge 58\%$	Manufacture of Refractories
Chemical	Low-grade ores	Manufacture of dichromates for electroplating and tanning industry

Table 3: Classification of manganese ores.

Grade	Specifications	Use
Metallurgical	>40% Mn	Manufacture of ferromanganese and special manganese alloys
Battery	>75% MnO ₂	Manufacture of batteries
Chemical	>80% MnO ₂	As oxidizing agent in chemical processes, potassium
Gireillicai	2 00 70 MHO ₂	permanganate, and other manganese chemicals

Manganese ore classified as follows Table 3. Metallurgical Ore with high manganese content (minimum 40% Mn) are suitable for the manufacture of ferromanganese and special manganese alloys.

An ore at least 75% ${\rm MnO}_2$ suitable for the manufacture of batteries.

An ore at least $80\%~{\rm MnO_2}$ suitable for use as an oxidizing agent in chemical processes or in the production of potassium permanganate and other manganese chemicals.

Pyrite and pyrrhotite which are iron sulphides are usually considered as metallic minerals because of their metallic lustre but they are mainly evaluated for their sulphur and not for their iron content, they are used to make sulphuric acid. Few plants however, process the remaining ferric oxide to extract traces of nonferrous metals contained in them; the purified ferric oxide may then be used for making iron. The presence of pyrite and pyrrhotite in sulphide ores is undesirable and usually methods have to be found to remove them [2].

Ilmenite is a source of titanium as well as iron. Although titanium minerals are used for producing titanium metal, yet 99% of the tonnage is used for ${\rm TiO_2}$ pigment manufacture. Furthermore, ilmenite reserves are far larger than those of rutile; ilmenite supplies about 85% of the world demand and retile the remaining 15%.

While dolomite, $(Mg,Ca)CO_3$, is used for producing metallic magnesium and to some extent as a refractory, magnetite, $MgCO_3$, is used mainly as a refractory: hence it is classified as a non-metallic mineral. One reason for that is that MgO prepared from magnetite has a higher melting point than (Mg,Ca)O prepared from dolomite hence more suitable as a refractory.

Metallic

Table 4: Gives a list of the most important metallic minerals classified according to chemical composition.

Group	Minerals	Composition
	Gold	Au
	Silver	Ag
	Electrum	Au-Ag
Native	Platinum metals	Pt, Ir, Os, Ru, Rh, Pd
Metals	Copper	Cu
	Awarite	$FeNi_2$
	Josephinite	$FeNi_3$
	Native mercury	Hg

		Gibbsite	Al(OH) ₃
	Aluminium	Böhmite	АІООН
		Diaspore	Alooh
		Cuprite	Cu ₂ O
		Tenorite	CuO
	Copper	Malachite	CuCO ₃ •Cu(OH) ₂
		Azurite	2CuCO ₃ •Cu(OH) ₂
		Magnetite	Fe ₃ O ₄
		Hematite	$\operatorname{Fe_2O_3}$
	Iron	Ilmenite	Fe ₂ O ₃ •nH ₂ O
		Goethite	FeOOH
Oxides, Hydroxides			FeCO ₃
and Carbonates	Magnesium	Dolomite	(Ca,Mg)CO ₃
		Pyrolusite	MnO ₂
	Manganese	Manganite	Mn ₂ O ₃ •H ₂ O
		Hausmannite	$\mathrm{Mn_{_3}O_{_4}}$
	Rare earths	Bastnasite	LnFCO ₃ (Ln=lanthanide)
	Tin	Cassiterite	SnO ₂
	Titanium	Rutile	TiO ₂
	I I was it was	Pitchblende	U ₃ O ₈
	Uranium	Uraninite	UO_2
		Zincite	ZnO
	Zinc	Hydrozincite	ZnCO ₃ •2Zn(OH) ₂
		Smithsonite	$ZnCO_3$
	Chromium	Chromite	Cr ₂ O ₃ •FeO
	Niobium	Columbite	Nb ₂ O ₅ •(Fe,Mn)O
		Pyrochlore	Nb ₂ O ₅ •(Ca,Ba)O•NaF
Complex Oxides	Tantalum	Tantalite	Ta ₂ O ₅ •(Fe,Mn)O
	Titanium	Ilmenite	TiO ₂ •FeO
	Tungsten	Scheelite	WO ₃ •CaO
	Tungsten	Wolframite	WO₃•FeO
Silicates			

	Beryllium Beryl 3BeO•Al		3BeO•Al ₂ O ₃ •6SiO ₂	
Anhydrous	Lithium	Spodumene	Li ₂ O•Al ₂ O ₃ •4SiO ₂	
	Zirconium	Zircon ZrSiO ₄		
	Cesium	Pollucite	$2Cs_2O \bullet 2Al_2O_3 \bullet 4SiO_2 \bullet H_2O$	
Hydrated	Copper	Chrysocolla	$Cu_3(OH)_2 \bullet Si_4O_{10} \bullet nH_2O$	
	Nickel	Garnierite	$(Ni,Mg)_3(OH)_4 \bullet Si_2O_5 \bullet nH_2O$	
	Antimony	Stibnite	Sb ₂ S ₃	
		Realgar	As ₄ S ₄	
	Arsenic	Orpiment	As ₂ S ₃	
		Arsenopyrite	FeAsS	
	Cobalt	Linnæite	Co ₃ S ₄	
		Chalcocite	Cu ₂ S	
		Covellite	CuS	
		Digenite	Cu ₉ S ₅	
	Copper	Bornite	Cu ₅ FeS ₄	
		Chalcopyrite	CuFeS ₂	
Sulfides		Cubanite	CuFe ₂ S ₃	
		Enargite	Cu ₃ AsS ₄	
		Pyrite	FeS ₂	
	Iron	Marcasite	FeS ₂	
		Pyrrhotite	FeS	
	Lead	Lead Galena PbS		
	Mercury	y Cinnabar HgS		
	Molybdenum Molybden		MoS ₂	
	Nickel	Pentlandite	(Fe,Ni)S	
	Silver	Argentite	Ag_2S	
	Zinc	Sphalerite	ZnS	
Phosphate	Rare earths	Monazite	LnPO ₄	
Поэрнасе	naic cal tils	Xenotime	LnPO ₄	
Sulphate	Lead	Anglesite	PbSO ₄	
Juipilate	Aluminium	Alunite	KAl ₃ (SO ₄) ₂ (OH) ₆	
Telluride	Telluride Gold Calaverite		AuTe ₂	
Arsenide	Cobalt	obalt Smaltite CoAs ₂		

Table 4 Classification of the most important metallic minerals according to chemical composition of no technical importance ${\it Ln}$ stands for lanthanide.

Native metals

Figure 4: Museum samples of native metals. Native mercury of no technical importance.

Table 5: Analysis of telluric and meteoric iron.

	Telluric %	Meteoric %
Nickel	0.5-4	5–20
Cobalt	0.1-0.4	0.5-0.7
Carbon	0.2-4.5	0.03-0.10
Basalt	5–10	nil

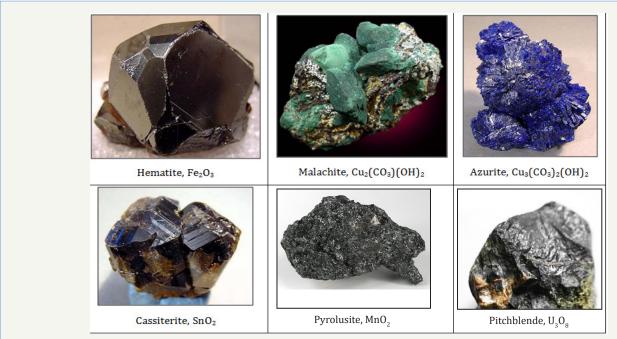


Figure 5: Museum samples of common oxide minerals.

Figure 4 shows museum samples of native metals. Iron also occurs in a rare form of large boulders 20 to 80 tonnes, which may be mistaken for a meteorite, but because of its different analysis Table 5 absence of Widmanstätten structure characteristic of meteoric iron when a piece is polished, etched, and examined by the optical microscope, it is known as telluric iron, i.e., terrestrial iron.

The major occurrence of telluric iron is in association with the basalts of Western Greenland. Large boulders are on exhibit at the Natural History Museums in Stockholm, Copenhagen, and Helsinki. Telluric iron is found also as small millimetre-sized peashaped grains disseminated in the basalt, characterized of their low **Table 6:** Formation of hydrated silicates.

carbon content, usually less than 0.7%. These were extracted from the basalt by the natives by crushing and then cold-hammering the collected metallic particles into coin-sized flakes to insert them into groves in bone and use them as knives [3].

Oxides, hydroxides, and carbonates

These comprise the important minerals of aluminium, iron, magnesium, manganese, rare earths, tin, titanium, and uranium; those of copper and zinc are of minor importance. Figure 5 shows some common oxide minerals. Complex oxides comprise minerals of chromium, niobium, tantalum, titanium, and tungsten.

$$3KAlSi_3O_8 + 4H_2O + 2CO_2 \rightarrow Al_4(Si_4O_{10})(OH)_8 + 2K_2CO_3 + 8SiO_2$$

$$4MgSiO_3 + H_2O + CO_2 \rightarrow Mg_3(Si_4O_{10})(OH)_2 + MgCO_3$$
enstatite
$$4Mg_2SiO_4 + 6H_2O \rightarrow Mg_6(si_4O_{10})(OH)_8 + 2Mg(OH)_2$$
forsterite
$$4Mg_2SiO_4 + 4H_2O + 2CO_2 \rightarrow Mg_6(si_4O_{10})(OH)_8 + 2MgCO_3$$
forsterite
$$4Mg_2SiO_4 + 4H_2O + 2CO_2 \rightarrow Mg_6(si_4O_{10})(OH)_8 + 2MgCO_3$$
forsterite
$$3KAlSi_3O_8 + H_2O + CO_2 \rightarrow KAl_2(AlSi_3O_{10})(OH)_2 + K_2CO_3 + 6SiO_2$$
orthoclase
$$Mg_2SiO_4 + 4H_2O + CO_2 \rightarrow KAl_2(AlSi_3O_{10})(OH)_2 + K_2CO_3 + 6SiO_2$$
mus covite

Silicates: These may be anhydrous and hydrated silicates Table 6. The first group comprise minerals of beryllium, lithium, and zirconium, while the second group comprise those of caesium, copper, and nickel.

Sulphides: These comprise the most important minerals of antimony, arsenic, cobalt, copper, lead, mercury, molybdenum, nickel, silver, and zinc. Figure 6 shows some common sulphide minerals.

Volume 1 - Issue - 1

Domarke

Others: Phosphates are mainly the rare earths in the form of monazite sand. Sulphates of lead, gold telluride, and cobalt arsenide -all are of minor importance.

Non-metallic and industrial

Minoral

According to their abundance, industrial minerals can be classified into three main groups: Rare: These occur in small quantities, in limited areas, used in small quantities, and command a high price. For example, diamonds, sheet mica, graphite, corundum, precious stones, and the semi-precious stones. Widely available: These occur in large quantities in few geologic environments, are used in appreciable amounts, and command a moderate price. For example asbestos, coal, phosphate, gypsum, kaolin, potash, salt, sulphur, talc, trine, barite, borates, feldspar, fluorite, magnetite, and diatomite.

Table 7: Chemical composition of important industrial minerals.

Abundant: These are abundant in all geologic environments, used in large amounts, and are relatively cheap. For example, clay, limestone, sand, gravel, and stones. Strictly speaking, some of the members of these groups are not minerals but ores having a geological name. For example, phosphate rock is neither a rock nor a mineral; it is a geological name for a certain type of formation containing phosphate minerals associated with gangue minerals such as calcite, iron oxides, clays, etc. The major phosphate mineral of economic value in this type of deposit is apatite, which is principally calcium phosphate. Similarly, clay is a geological name for a large variety of hydrated aluminium silicate minerals, of which kaolinite is one. Table 7 gives an alphabetical list of these minerals and their chemical composition. Industrial minerals can also be classified according to their use as shown in Table 8.

	Mineral	Composition		Remarks
Apatite		Calcium phosphate	Ca ₁₀ (PO ₄) ₆ X ₂	
	[X is F, Cl, or (OH).]	Main mineral in phosphate rock		
	Asbestos	Hydrated magnesium silicate	$Mg_6(Si_4O_{12})(OH)_3$	In form of long fibres
	Barite	Barium sulphate	BaSO ₄	Filler for pigments
	Betonies	A clay mineral	(Al,Mg) ₈ (Si ₄ O ₁₀) ₃ (OH) ₁₀ •12H ₂ O	Agglomeration additive
	Borax	Sodium borate	$Na_2B_4O_7 \bullet 10H_2O$	
	Clays	Hydrated aluminium silicates		Used in paper making
	Cryolite	Sodium aluminium fluoride	$Na_{_3}AlF_{_6}$	Low melting point
	Diamond -industrial	Crystalline carbon	С	The hardest mineral
	Diatomite	Hydrated silica		Marine fossils, large surface area
	Feldspar	A mineral group	K, Al silicates	
	Fluorspar	Calcium fluoride	CaF ₂	Main source of fluorine
	Garnet	A group of silicates that crystallize in the cubic system		Abrasives, gemstones
	Graphite	Carbon (crystalline)	С	
	Gypsum	Calcium sulphate	$CaSO_4 \bullet 2H_2O$	
	Kaolinite	A clay mineral	$Al_4(Si_4O_{10})(OH)_8$	
	Limestone	Calcium carbonate	CaCO ₃	
	Magnetite	Magnesium carbonate	$MgCO_3$	
	Marble	Calcium carbonate	CaCO ₃ crystalline	
	Mica		K, Al silicates	
	Nepheline syenite	Sodium aluminum silicate		
	Potash	Potassium chloride and carbonate	KCl, K_2CO_3	Fertilizer
	Pumice	Silicate		Porous, light, volcanic rock, large surface area
	Quartz	Silica	SiO ₂	
	Salt	Sodium chloride	NaCl	
	Sand and gravel	Silica	SiO ₂	
	Sulfur	Sulfur	S	
	Talc	Hydrated magnesium silicate	$Mg_3(Si_4O_{10})(OH)_2$	Also known as soapstone
	Trona	Sodium carbonate	$Na_2CO_3 \bullet NaHCO_3 \bullet 2H_2O$	
	Vermiculite	Hydrated silicates		Expands and swells on heating
	Zeolite	Hydrated alkali alumino silicates	$Na_x(AlO_2)_x(SiO_2)_y \bullet nH_2O$	Ion exchanger

Table 8: Classification of industrial minerals according to their use.

Industry	Minerals Used	Remarks
	Corundum	
Abrasive	Sandstone	
	Diamonds (industrial)	
	Sand, gravel	
Building	Limestone	
	Gypsum	
	Clay	
Ceramics & Glass	Feldspar	
	Clay	Cement
	Sulfur	Sulphuric acid
	Salt	Alkali, chlorine
	Trona	Sodium carbonate
Chemical	Gypsum	Cement
	Borax	
	Fluorite	Hydrogen fluoride and fluorine
	Zeolite	Water treatment
	Diatomite	Adsorbent
	Phosphate rock	
Fertilizer	Potash	
	Nitrates	Chile is the main supplier
	Coal	Used to make coke
	Lignite	
	Peat	
Fuels	Natural gas	
	Petroleum	Distilled into many fractions
	Tar sands	Petroleum
	Asbestos	
Insulation	Mica	
	Diamonds (gem)	
Jewellery	Amethyst	
	Aqua marine	
	Quartz	
Metallurgy (flux)	Limestone	
Pigment	Iron oxides	Yellow, red, black
pi viii	Clay	
Pigment Filler	Barite	
	Clay	
Refractories	Magnetite	
	Chromite	

Metals from the Sea

Magnesium is the only metal produced today from sea water. Sea water contains 0.13% magnesium from which magnesium hydroxide is precipitated and magnesium metal is produced. Dead Sea on the other hand contains a higher percentage of magnesium.

Summary

Metals used in daily life are produced by treatment of ores

which contain minerals of these metals. Magnesium is the only metals obtained from sea water.

References

- 1. Habashi F (2003) Metals from ores. An introduction to extractive.
- 2. Habashi F (2016) Industrial minerals through the ages.
- Habashi F (2009) Metals from ores a look to the future. In: Krausz S (Ed.), In Proceedings of the XIII Balkan. Mineral Processing Congress, Romania, pp. 919-924.