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Introduction
The increasing volume of biological data, especially in genomics, proteomics, and structural 

biology, has opened up new opportunities for computational approaches to help decode 
biological systems. In particular, Machine Learning (ML) methods have become an invaluable 
tool for analyzing and interpreting large biological datasets, enabling predictive models for a 
range of bioinformatics tasks. These include predicting protein-protein interactions, protein 
functions, and macromolecular features, which are crucial for advancing our understanding 
of biological processes and driving applications like drug discovery and disease modeling.

Background and datasets
In this research, we focus on two major datasets that provide rich biological data for 

analysis: the BioGRID Interaction Dataset and the RCSB PDB Macromolecular Structure 
Dataset.
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Abstract

This study investigates the application of machine learning models to classify biological interactions and 
macromolecular structural features, leveraging two distinct datasets: the BioGRID Interaction Dataset 
and the RCSB PDB Macromolecular Structure Dataset. Four machine learning models, Random Forest, 
XGBoost, Support Vector Machines (SVM), and Deep Learning, are evaluated for their ability to predict 
high-throughput interactions and solvent content in macromolecular structures. Key findings show that 
Random Forest and XGBoost outperform SVM and Deep Learning in both accuracy and interpretability. 
Specifically, XGBoost was optimized to prioritize recall, achieving a recall rate of 99.98% for high-
throughput interaction detection. Random Forest demonstrated high precision, making it ideal for 
scenarios requiring accurate identification of positive cases. Both models achieved high F1 scores of 96%, 
indicating a well-balanced performance between precision and recall. Through hyperparameter tuning 
and threshold adjustment, we were able to enhance XGBoost’s sensitivity to positive cases, highlighting 
the importance of optimizing models for specific application needs in bioinformatics. The study also 
identifies critical features, such as Percent Solvent Content and Matthews Coefficient, as key determinants 
for classification. This research fills a gap in the use of machine learning for bioinformatics by providing 
a detailed comparison of widely-used models, identifying key factors influencing classification tasks, and 
demonstrating how model adjustments can improve predictive accuracy. The findings contribute to more 
effective data-driven approaches in understanding biological interactions and macromolecular structure 
analysis, with potential applications in drug discovery, molecular biology, and structural bioinformatics.
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BioGRID interaction dataset: The Biological General 
Repository for Interaction Datasets (BioGRID) is one of the largest 
and most comprehensive interaction databases, containing 
experimentally verified Protein-Protein Interactions (PPIs), gene 
interactions, and genetic interactions from a variety of organisms. 
The task is to predict whether an interaction is derived from a 
high-throughput or low-throughput experimental method. This 
classification task is challenging due to the imbalanced nature of the 
dataset, where high-throughput interactions are underrepresented 
[1].

RCSB PDB macromolecular structure dataset: The Protein 
Data Bank (PDB) provides three-dimensional structures of proteins, 
nucleic acids, and complexes. The RCSB PDB Macromolecular 
Structure Dataset contains structural features of macromolecules, 
including information about solvent content, crystallization 
methods, and temperature conditions. Solvent content prediction 
is crucial for understanding protein stability and the structural 
properties of macromolecules, providing insights into their 
biological functions [2].

Previous research
Recent studies have applied various machine learning 

techniques to predict biological interactions and structural features 
from biological datasets. Key studies in this domain include:

Some research utilized Random Forest for predicting Protein-
Protein Interactions (PPIs) based on the BioGRID dataset and 
demonstrated the importance of feature importance for biological 
classification tasks. Their study highlighted the challenge of 
improving recall without compromising precision, especially in 
imbalanced datasets [3]. Other used XGBoost to classify protein 
interactions based on high-throughput data, achieving strong 
results in precision but with limited exploration into optimizing 
for recall. They identified XGBoost as one of the best models 
for biological interaction classification, yet did not fully exploit 
hyperparameter tuning or threshold adjustments to enhance recall 
[4]. One research applied Support Vector Machines (SVM) to predict 
solvent content in macromolecular structures using data from the 
RCSB PDB. The study demonstrated that SVMs were effective but 
lacked further optimization, such as hyperparameter tuning and 
threshold adjustment, which could improve performance [5]. Other 
applied deep learning models for protein structure prediction 
and solvent content classification. While promising, deep learning 
models struggled with smaller datasets due to overfitting, indicating 
the need for better dataset preprocessing and optimization 
strategies [6]. Some conducted a comparative study of various 
machine learning models, including XGBoost and SVM, for protein 
function prediction using BioGRID data. They found that XGBoost 
outperformed other models in both precision and recall but did not 
explore class imbalance handling techniques in depth [7]. One of 
the papers explored the use of ensemble models for protein-protein 
interaction prediction, showing that combining multiple classifiers 
could improve prediction accuracy. However, they did not address 
threshold adjustments or hyperparameter optimization, which 
are essential for model performance [8]. One applied Deep Neural 
Networks (DNN) for protein function classification using PDB data, 

showing moderate success but lacking interpretability and efficient 
feature selection techniques. XGBoost and SVM are used to predict 
protein structure features, achieving high accuracy in research. 
However, they did not investigate class imbalance handling 
or model interpretability, limiting their findings for biological 
applications [4,9]. A research demonstrated the application of 
XGBoost to predict interaction types in BioGRID, where they 
addressed the need for model optimization and careful handling 
of imbalanced data [4]. Random Forest utilized to classify protein 
functions, emphasizing the importance of feature engineering but 
did not address threshold adjustment or class imbalance that could 
improve their model’s recall in other research [10,11].

Key research gaps
Despite these advances, several key gaps remain:

Model optimization: Although several studies applied 
machine learning models to bioinformatics datasets, they did not 
fully explore the potential of hyperparameter tuning and threshold 
adjustment to optimize model performance. These techniques are 
critical for improving recall in tasks where detecting positive cases 
is more important than minimizing false positives, especially in 
imbalanced datasets [12].

Class imbalance: Many studies have not adequately addressed 
class imbalance, which is common in biological datasets (e.g., 
predicting high-throughput interactions or solvent content). 
Techniques such as scale_pos_weight in XGBoost and threshold 
adjustment are underexplored in bioinformatics applications [13].

Deep learning limitations: Deep learning models, although 
promising, often face challenges in bioinformatics tasks due to 
small datasets or complex feature engineering requirements. 
Previous studies did not fully address the challenges of applying 
deep learning to biological data, particularly when the datasets are 
not sufficiently large [14].

Feature importance and interpretability: Despite the 
effectiveness of models like XGBoost and Random Forest, previous 
research did not extensively analyze the feature importance and 
interpretability of the models, which are essential for understanding 
biological processes and improving model performance [15].

Contributions of this research
This research fills the following gaps:

Model optimization: We apply RandomizedSearchCV and 
threshold adjustment to XGBoost and Random Forest models, 
improving their ability to handle imbalanced data and prioritize 
recall while maintaining precision.

Class imbalance handling: We address the issue of class 
imbalance by using techniques such as scale_pos_weight in XGBoost 
and adjusting classification thresholds to ensure high recall without 
sacrificing precision.

Deep learning evaluation: We investigate the limitations of 
deep learning models, demonstrating that while neural networks 
have potential, they often underperform on smaller biological 
datasets due to overfitting and insufficient optimization.
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Feature importance: Through detailed analysis and 
visualization of feature importance, we provide valuable insights 
into the key biological features, such as Percent Solvent Content and 
Matthews Coefficient, that drive the classification tasks.

This research contributes to the growing body of knowledge in 
bioinformatics by optimizing existing machine learning models for 
biological classification tasks, addressing key research gaps, and 
offering practical recommendations for future studies.

Methodology
This study applied machine learning models to classify biological 

data from two prominent datasets: the BioGRID Interaction Dataset 
and the RCSB PDB Macromolecular Structure Dataset. The goal 
was to classify interactions based on experimental methods and 
predict solvent content in macromolecular structures. Below is a 
detailed description of the steps involved in data preprocessing, 
model training, evaluation, and optimization. Figure 1 shows the 
full process of the work [16].

Figure 1: Full procedure of the work.

Datasets used
The study utilized two major biological datasets. The BioGRID 

Interaction Dataset is one of the largest repositories of Protein-
Protein Interactions (PPIs) and genetic interactions. This dataset 
provides essential information, including gene identifiers, 
interaction types, and experimental methods used to validate 
interactions. The task was to classify interactions based on whether 
they came from high-throughput or low-throughput experimental 
methods, a classification that posed challenges due to the 
imbalanced nature of the dataset. The second dataset, the RCSB PDB 

Macromolecular Structure Dataset, contains structural information 
for proteins, nucleic acids, and other complex molecules. This 
dataset includes crucial details such as crystallization methods, 
pH, temperature conditions, and solvent content. The primary 
classification task was to predict solvent content (high or low) 
for macromolecular structures, which is an important factor in 
understanding protein stability and interaction properties.

Data preprocessing
Data preprocessing was a critical first step. The initial datasets 

contained several missing values, so rows with missing values were 
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dropped to ensure that only complete records were used for training. 
This was important for maintaining the accuracy and integrity of 
the models. For feature selection, relevant variables were chosen 
for both datasets. In the BioGRID Interaction Dataset, features 
such as Official Symbol Interactor A, Official Symbol Interactor B, 
Experimental System Type, and others were selected. Similarly, for 
the RCSB PDB Dataset, features like Matthews Coefficient, Percent 
Solvent Content, pH, Temperature, and Number of Residues were 
included. Categorical variables such as Experimental Method in 
the BioGRID dataset and Crystallization Method in the PDB dataset 
were transformed into numerical values using Label Encoding. 
Additionally, target variables were created: for the BioGRID dataset, 
the target was a binary classification of high-throughput vs. low-
throughput methods, and for the RCSB PDB dataset, the target 
variable classified solvent content as high (greater than 50%) or 
low.

Model training and hyperparameter tuning
Four different machine learning models were applied to the 

datasets. The first model used was the Random Forest Classifier, 
which was chosen due to its robustness in handling categorical and 
continuous features and its ability to assess feature importance. 
To optimize the performance of the Random Forest model, 
RandomizedSearchCV was employed for hyperparameter tuning. 
This included tuning parameters such as n_estimators, max_depth, 
and min_samples_split. Feature importance from the Random 
Forest model provided insights into the most influential predictors, 
such as Percent Solvent Content and Matthews Coefficient. The 
second model implemented was XGBoost, a gradient boosting 
algorithm known for its efficiency and predictive performance. 
Similar to Random Forest, XGBoost was optimized through 
RandomizedSearchCV, tuning parameters such as n_estimators, 
learning_rate, max_depth, and subsample. A key aspect of improving 
the XGBoost model involved threshold adjustment. By lowering the 
classification threshold (e.g., to 0.3), we prioritized recall, making 
the model more sensitive to detecting positive cases (i.e., high-
throughput interactions and high solvent content), which improved 
its ability to capture more relevant instances.

The third model used was Support Vector Machines (SVM) 
with a linear kernel. SVM is particularly well-suited for binary 
classification tasks, and StandardScaler was used to standardize 
the features before training the model. This ensured that the SVM 
model was not biased by the varying scales of the features. The 
performance of the SVM model was compared to Random Forest 
and XGBoost in terms of accuracy and recall. Finally, a Deep Learning 
Model (DNN) was implemented using Keras with TensorFlow as the 
backend. The neural network consisted of two hidden layers with 
ReLU activation and a sigmoid output layer for binary classification. 
The model was trained for 10 epochs with a batch size of 32, using 
binary cross-entropy loss for optimization. Although deep learning 
models are powerful, they often face challenges when dealing with 
smaller datasets, as in this case, where performance was not as 
strong as the traditional models.

Data splitting
To ensure the robustness and generalizability of the models, 

the datasets were split into three subsets: training (70%), 
validation (15%), and test (15%) sets. The training set was used to 
train the models, while the validation set was used for tuning the 
hyperparameters. The test set provided an unbiased evaluation of 
the final models. Stratified sampling was applied to preserve the 
distribution of the target variable across the training, validation, 
and test sets, which is crucial for dealing with imbalanced datasets.

Model evaluation
The models were evaluated using a range of performance 

metrics. These metrics included accuracy, precision, recall, and F1 
score. Accuracy measures the proportion of correct predictions, 
while precision assesses the proportion of true positives among 
predicted positives. Recall evaluates the proportion of true positives 
among actual positives, and F1 score provides a balanced measure 
of precision and recall. To assess the model’s performance in greater 
detail, confusion matrices were generated for each model. These 
matrices helped visualize the true positives, false positives, true 
negatives, and false negatives, providing a clearer understanding 
of where each model succeeded and failed. Additionally, feature 
importance was assessed using the Random Forest and XGBoost 
models to identify key variables, such as Percent Solvent Content 
and Matthews Coefficient, that contributed to the classification.

Hyperparameter optimization
RandomizedSearchCV was employed for both XGBoost and 

Random Forest models to optimize their hyperparameters, allowing 
us to explore a wide range of parameter values and find the best 
combination for each model. For XGBoost, parameters such as 
learning_rate, n_estimators, and max_depth were tuned, while for 
Random Forest, n_estimators, max_depth, and min_samples_split 
were adjusted. This hyperparameter optimization step was crucial 
for improving model performance, especially in terms of recall.

Result Analysis
Classification of BioGRID interaction dataset (first 
dataset) with four models

In Part 1, four machine learning models, Random Forest, 
XGBoost, SVM, and Deep Learning, were applied to classify protein-
protein interactions in the BioGRID Interaction Dataset. The task 
was to predict whether an interaction was derived from high-
throughput experiments or low-throughput methods. The models 
demonstrated strong performance across various evaluation 
metrics. Random Forest and XGBoost both achieved high accuracy, 
precision, recall, and F1 score, indicating that both models were 
effective for this classification task. Random Forest was particularly 
strong in precision, which suggests that it was very good at correctly 
identifying positive interactions (i.e., high-throughput interactions). 
On the other hand, XGBoost exhibited great recall, which means it 
was very good at detecting positive cases. However, this came at 
the cost of precision, as XGBoost produced more false positives 
compared to Random Forest. The Deep Learning model and SVM 
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also showed reasonable results but performed slightly worse than 
Random Forest and XGBoost. Deep Learning struggled to match the 
performance of the traditional models, likely due to the smaller size 
of the dataset, which may not have been sufficient for training an 

effective neural network. SVM achieved solid accuracy, but it was 
not as effective at detecting positive interactions as XGBoost or 
Random Forest. Figure 2 shows the results-

Figure 2: Accuracy, precision, recall, F1 score of classification on BioGRID interaction dataset.

The results of this part are:

a.	 XGBoost achieved an accuracy of 0.8389, with a precision 
of 0.8416, recall of 0.9927, and an F1 score of 0.9109.

b.	 Random Forest achieved a higher accuracy of 0.8994, 
with a precision of 0.9270, recall of 0.9539, and an F1 score of 
0.9403.

c.	 Deep Learning, despite its potential, struggled to match 
the performance of the traditional models, yielding an accuracy 
of 0.8297, a precision of 0.8297, recall of 1.0, and an F1 score of 
0.9069.

d.	 SVM showed similar performance to Deep Learning, 
achieving an accuracy of 0.8297, a precision of 0.8297, recall of 
1.0, and an F1 score of 0.9069.

Hyperparameter tuning for random forest and XGBoost
In Part 2, hyperparameter tuning was performed for both 

Random Forest and XGBoost using RandomizedSearchCV to improve 

model performance. After optimizing the hyperparameters, both 
models showed improved results. For Random Forest, fine-tuning 
parameters like n_estimators, max_depth, and min_samples_split led 
to better generalization and a further improvement in performance, 
particularly in terms of precision. The model continued to excel 
in precision, making it ideal for tasks where correctly identifying 
high-throughput interactions is crucial. Similarly, XGBoost was 
optimized by adjusting hyperparameters such as n_estimators, 
learning_rate, and max_depth. This optimization helped to retain 
its high recall while maintaining a good balance with precision. The 
results confirmed that XGBoost continued to perform excellently in 
identifying high-throughput interactions, with a slight emphasis on 
recall over precision. The hyperparameter tuning for both models 
enhanced their ability to handle biological data and significantly 
improved their performance without altering the fundamental 
strengths of the models.

The results of this part are (Figure 3):
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Figure 3: Hyperparameter tuning results for random forest and XGBoost.

a.	 Random Forest’s accuracy improved to 0.9008, with 
precision increasing to 0.9174, recall reaching 0.9675, and an 
F1 score of 0.9418.

b.	 XGBoost’s performance remained strong, with accuracy of 
0.8325, precision of 0.8337, recall of 0.9969, and an F1 score of 
0.9081.

c.	 Interestingly, the number of features was reduced after 
Principal Component Analysis (PCA) to three, while Recursive 
Feature Elimination (RFE) also selected the top three features, 
which were highly relevant for the classification task.

d.	 Random Forest Confusion Matrix: Shows high true 
positives (340,223) for high-throughput interactions and low 
false positives (30,618), indicating that it performs excellently 
in distinguishing high-throughput from non-high-throughput 
interactions (Figure 4).

e.	 XGBoost Confusion Matrix: Similar to Random Forest but 
with slightly lower performance as reflected in the number of 
false positives (69,909). Nonetheless, the model still shows 
high recall, indicating strong detection of true positives (Figure 
5).

Figure 4: Random forest confusion matrix.
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Figure 5: XGBoost confusion matrix.

Focused improvement on XGBoost
In Part 3, a focused improvement was made on XGBoost by 

adjusting the classification threshold to 0.3 to increase the model’s 
recall. This change was particularly important in biological tasks 
where detecting positive cases is more critical than minimizing 
false positives. By lowering the threshold to 0.3, the recall 
increased to 99.98%, meaning that the model became more 
sensitive to identifying high-throughput interactions. However, 
this improvement in recall came at the cost of precision, which 

decreased as the model produced more false positives. The trade-
off between precision and recall is important to note, as the model’s 
higher sensitivity to positive cases made it ideal for situations 
where missing a positive case could have serious consequences, 
such as in biological research or drug discovery. Performance on 
the test set showed similar results, further indicating that the 
threshold adjustment enhanced the model’s generalization ability 
while maintaining its strong overall performance in detecting high-
throughput interactions.

Figure 6: Focused improvement results on XGBoost.
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The results of this part are (Figure 6):

a.	 The adjusted XGBoost model achieved an accuracy of 
0.8343, with precision of 0.8336, recall of 0.9998, and an F1 
score of 0.9092.

b.	 Test set performance showed similar results, with an 
accuracy of 0.8340, precision of 0.8334, recall of 0.9998, and an 
F1 score of 0.9090.

c.	 The threshold adjustment clearly demonstrated the 

trade-off between precision and recall, where XGBoost became 
more sensitive to detecting positive cases (high-throughput 
interactions) but with more false positives. This adjustment 
is particularly useful for tasks where missing positive cases is 
more critical than accepting a few false positives.

d.	 Confusion Matrix: The confusion matrix for both training 
and test sets shows that XGBoost correctly identifies a high 
proportion of high-throughput interactions, but a few false 
positives and false negatives are present, which is typical in 
class-imbalanced problems (Figure 7,8).

Figure 7: XGBoost confusion matrix after focused improvement.

Figure 8: XGBoost test set confusion matrix after focused improvement.
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Classification of RCSB PDB dataset (Second Dataset) 
with four models

In Part 4, the same four models, Random Forest, XGBoost, SVM, 
and Deep Learning, were applied to the RCSB PDB Macromolecular 
Structure Dataset, with the task of predicting whether the 
solvent content of a macromolecular structure is high or low. 
Once again, Random Forest and XGBoost outperformed the other 
models, demonstrating high accuracy, precision, recall, and F1 
score. XGBoost had a slight edge in recall, which suggests that it 
was slightly better at identifying high solvent content structures 
compared to Random Forest. Both models showed that they were 

very effective at classifying solvent content, with Random Forest 
excelling in precision and XGBoost shining in recall. Deep Learning 
struggled again, showing lower accuracy and precision compared 
to the traditional models. This can be attributed to the relatively 
small size of the dataset and the limited number of training epochs. 
SVM performed well overall, but it was slightly behind Random 
Forest and XGBoost in terms of recall. Feature importance analysis 
revealed that Percent Solvent Content and Matthews Coefficient 
were the most significant features for both Random Forest and 
XGBoost, offering crucial insights into which aspects of the data are 
most predictive for solvent content classification.

Figure 9: Feature importance for random forest.

Figure 10: Feature importance for XGBoost.
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The results of this part are (Figure 9,10):

a.	 Both Random Forest and XGBoost achieved the same 
accuracy of 0.9583, with a precision of 1.0, recall of 0.9231, and 
F1 score of 0.96.

b.	 Deep Learning struggled again, showing a significantly 
lower performance with accuracy of 0.5833, precision of 0.6, 
recall of 0.6923, and F1 score of 0.6429. This suggests that deep 
learning models may require more data or training epochs to 
improve.

c.	 SVM performed well, achieving an accuracy of 0.9167, 
a precision of 1.0, recall of 0.8462, and an F1 score of 0.9167. 
While solid, SVM did not perform as well in recall compared to 
Random Forest and XGBoost.

We have also provided confusion matrices of the important 
models (Figure 4,5,7,8) to aid interpretability and these numerically 
measure the true positives, false positives, the true negatives and 
the false negatives. These matrices demonstrate the precision recall 
trade-off directly such that when XGBoost has a high recall (99.98), 
it experiences an increase in false positives but Random Forest 
does not and has a higher precision. The visual and quantitative 
disaggregation helps in the selection of models on the basis of 
application-specific considerations, including giving sensitivity in 
interaction detection or accuracy in structural classification a high 
priority.

Comprehensive model comparison and insights
After analyzing the results from both datasets, it became clear 

that Random Forest and XGBoost were the top performers across 
all experiments. Random Forest was particularly effective for 
tasks that required high precision, making it ideal for applications 
where accurately identifying positive interactions or structures is 
critical. XGBoost, on the other hand, excelled in recall, making it 
more suitable for tasks where it is crucial to detect as many positive 
cases as possible, even at the cost of some false positives. Both 
Deep Learning and SVM had competitive performances but did 
not outperform Random Forest and XGBoost when both precision 
and recall were considered together. Deep Learning struggled with 
smaller datasets and was less effective than traditional models, 
while SVM had solid performance but failed to capture positive 
cases as effectively as the other models.

This research is valuable for several reasons: It applies robust 
machine learning models to real-world biological datasets, such as 
the BioGRID Interaction Dataset and RCSB PDB Macromolecular 
Structure Dataset, which are essential for understanding biological 
interactions and macromolecular properties. The study explores 
model optimization techniques, including hyperparameter tuning 
and threshold adjustments, to improve model performance. This 
demonstrates how to extract the best performance from Random 
Forest and XGBoost. It fills an important gap by providing a 
framework for applying machine learning models to biological 
classification tasks, such as interaction classification and solvent 
content prediction in macromolecular structures, making it easier 
for researchers to adopt these models in future studies. The study 

highlights the trade-off between precision and recall, which is 
particularly valuable for high-stakes biological applications, where 
missing positive interactions or incorrect classification of solvent 
content could have serious consequences.

Although our experiment used scale_pos_weight and threshold 
adjust to reduce the imbalance in classes, it might be improved by 
a more advanced method, like Synthetic Minority Over-sampling 
Technique (SMOTE), adaptive sampling, or learning cost-sensitive 
in future studies to enhance the strength of the model further. Also, 
deep learning models appeared to perform poorly because of the 
limitation of the size of the datasets and because of the presence of 
class imbalance, resulting in overfitting and lower generalizability. 
The size of datasets can be increased, data augmentation can 
be applied to suit biological characteristics or pre-trained 
architectures could be used to address these limitations in future 
implementations.

Gaps filled and improvements made
i.	 Threshold Adjustment: The adjustment of the 
classification threshold in XGBoost to optimize recall was a 
crucial improvement, allowing the model to focus on high 
recall, which is essential for detecting rare positive interactions 
in biological applications.

ii.	 Model Fine-Tuning: By performing hyperparameter 
optimization for Random Forest and XGBoost, the study 
ensures that these models operate at their maximum potential, 
improving their generalizability and predictive power.

iii.	 Data Insights: The feature importance analysis in Part 4 
revealed which features, such as Percent Solvent Content and 
Matthews Coefficient, are most predictive for the classification 
task, helping to prioritize these factors in future research.

This study not only optimizes machine learning models for 
biological classification tasks but also provides valuable insights 
that will help drive future improvements in the prediction of 
biological interactions and macromolecular features.

Conclusion and Future Work
In conclusion, this research effectively demonstrated the 

application of machine learning models, including Random Forest, 
XGBoost, SVM, and Deep Learning, for classifying biological 
interactions and predicting macromolecular structural features 
from two distinct datasets: the BioGRID Interaction Dataset and the 
RCSB PDB Macromolecular Structure Dataset. The study highlighted 
that Random Forest and XGBoost were the most effective models, 
with Random Forest excelling in precision and XGBoost showing 
superior recall. Through hyperparameter tuning and threshold 
adjustment, we were able to enhance model performance, 
particularly in terms of recall, while maintaining high precision 
in Random Forest. This research also revealed the importance of 
specific features, such as Percent Solvent Content and Matthews 
Coefficient, in driving accurate predictions. For future work, this 
study paves the way for further optimizations and applications 
of these models in bioinformatics. Exploring deep learning with 
larger datasets and more epochs could improve its performance, 
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as could the integration of additional features and more complex 
architectures. Moreover, the incorporation of ensemble methods 
or hybrid models combining the strengths of multiple classifiers 
may further enhance prediction accuracy. Finally, the application of 
these models to other biological classification tasks, such as drug-
target interactions or gene-disease associations, would provide a 
broader scope for their utility in advancing biomedical research.
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