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Abstract

This study investigates the application of machine learning models to classify biological interactions and
macromolecular structural features, leveraging two distinct datasets: the BioGRID Interaction Dataset
and the RCSB PDB Macromolecular Structure Dataset. Four machine learning models, Random Forest,
XGBoost, Support Vector Machines (SVM), and Deep Learning, are evaluated for their ability to predict
high-throughput interactions and solvent content in macromolecular structures. Key findings show that
Random Forest and XGBoost outperform SVM and Deep Learning in both accuracy and interpretability.
Specifically, XGBoost was optimized to prioritize recall, achieving a recall rate of 99.98% for high-
throughput interaction detection. Random Forest demonstrated high precision, making it ideal for
scenarios requiring accurate identification of positive cases. Both models achieved high F1 scores of 96%,
indicating a well-balanced performance between precision and recall. Through hyperparameter tuning
and threshold adjustment, we were able to enhance XGBoost’s sensitivity to positive cases, highlighting
the importance of optimizing models for specific application needs in bioinformatics. The study also
identifies critical features, such as Percent Solvent Content and Matthews Coefficient, as key determinants
for classification. This research fills a gap in the use of machine learning for bioinformatics by providing
a detailed comparison of widely-used models, identifying key factors influencing classification tasks, and
demonstrating how model adjustments can improve predictive accuracy. The findings contribute to more
effective data-driven approaches in understanding biological interactions and macromolecular structure
analysis, with potential applications in drug discovery, molecular biology, and structural bioinformatics.

Keywords: Machine learning; Bioinformatics; High-throughput interactions; Macromolecular structures;
Model optimization

Introduction

Theincreasing volume of biological data, especially in genomics, proteomics, and structural
biology, has opened up new opportunities for computational approaches to help decode
biological systems. In particular, Machine Learning (ML) methods have become an invaluable
tool for analyzing and interpreting large biological datasets, enabling predictive models for a
range of bioinformatics tasks. These include predicting protein-protein interactions, protein
functions, and macromolecular features, which are crucial for advancing our understanding
of biological processes and driving applications like drug discovery and disease modeling.

Background and datasets

In this research, we focus on two major datasets that provide rich biological data for
analysis: the BioGRID Interaction Dataset and the RCSB PDB Macromolecular Structure
Dataset.
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BioGRID interaction dataset: The Biological General
Repository for Interaction Datasets (BioGRID) is one of the largest
and most comprehensive interaction databases, containing
experimentally verified Protein-Protein Interactions (PPIs), gene
interactions, and genetic interactions from a variety of organisms.
The task is to predict whether an interaction is derived from a
high-throughput or low-throughput experimental method. This
classification task is challenging due to the imbalanced nature of the
dataset, where high-throughput interactions are underrepresented
[1].

RCSB PDB macromolecular structure dataset: The Protein
Data Bank (PDB) provides three-dimensional structures of proteins,
nucleic acids, and complexes. The RCSB PDB Macromolecular
Structure Dataset contains structural features of macromolecules,
including information about solvent content, crystallization
methods, and temperature conditions. Solvent content prediction
is crucial for understanding protein stability and the structural
properties of macromolecules, providing insights into their
biological functions [2].

Previous research

Recent studies have applied various machine learning
techniques to predict biological interactions and structural features
from biological datasets. Key studies in this domain include:

Some research utilized Random Forest for predicting Protein-
Protein Interactions (PPIs) based on the BioGRID dataset and
demonstrated the importance of feature importance for biological
classification tasks. Their study highlighted the challenge of
improving recall without compromising precision, especially in
imbalanced datasets [3]. Other used XGBoost to classify protein
interactions based on high-throughput data, achieving strong
results in precision but with limited exploration into optimizing
for recall. They identified XGBoost as one of the best models
for biological interaction classification, yet did not fully exploit
hyperparameter tuning or threshold adjustments to enhance recall
[4]. One research applied Support Vector Machines (SVM) to predict
solvent content in macromolecular structures using data from the
RCSB PDB. The study demonstrated that SVMs were effective but
lacked further optimization, such as hyperparameter tuning and
threshold adjustment, which could improve performance [5]. Other
applied deep learning models for protein structure prediction
and solvent content classification. While promising, deep learning
models struggled with smaller datasets due to overfitting, indicating
the need for better dataset preprocessing and optimization
strategies [6]. Some conducted a comparative study of various
machine learning models, including XGBoost and SVM, for protein
function prediction using BioGRID data. They found that XGBoost
outperformed other models in both precision and recall but did not
explore class imbalance handling techniques in depth [7]. One of
the papers explored the use of ensemble models for protein-protein
interaction prediction, showing that combining multiple classifiers
could improve prediction accuracy. However, they did not address
threshold adjustments or hyperparameter optimization, which
are essential for model performance [8]. One applied Deep Neural
Networks (DNN) for protein function classification using PDB data,

showing moderate success but lacking interpretability and efficient
feature selection techniques. XGBoost and SVM are used to predict
protein structure features, achieving high accuracy in research.
However, they did not investigate class imbalance handling
or model interpretability, limiting their findings for biological
applications [4,9]. A research demonstrated the application of
XGBoost to predict interaction types in BioGRID, where they
addressed the need for model optimization and careful handling
of imbalanced data [4]. Random Forest utilized to classify protein
functions, emphasizing the importance of feature engineering but
did not address threshold adjustment or class imbalance that could
improve their model’s recall in other research [10,11].

Key research gaps
Despite these advances, several key gaps remain:

Model optimization: Although several studies applied
machine learning models to bioinformatics datasets, they did not
fully explore the potential of hyperparameter tuning and threshold
adjustment to optimize model performance. These techniques are
critical for improving recall in tasks where detecting positive cases
is more important than minimizing false positives, especially in
imbalanced datasets [12].

Class imbalance: Many studies have not adequately addressed
class imbalance, which is common in biological datasets (e.g.,
predicting high-throughput interactions or solvent content).
Techniques such as scale_pos_weight in XGBoost and threshold
adjustment are underexplored in bioinformatics applications [13].

Deep learning limitations: Deep learning models, although
promising, often face challenges in bioinformatics tasks due to
small datasets or complex feature engineering requirements.
Previous studies did not fully address the challenges of applying
deep learning to biological data, particularly when the datasets are
not sufficiently large [14].

Feature importance and interpretability: Despite the
effectiveness of models like XGBoost and Random Forest, previous
research did not extensively analyze the feature importance and
interpretability of the models, which are essential for understanding
biological processes and improving model performance [15].

Contributions of this research
This research fills the following gaps:

Model optimization: We apply RandomizedSearchCV and
threshold adjustment to XGBoost and Random Forest models,
improving their ability to handle imbalanced data and prioritize
recall while maintaining precision.

Class imbalance handling: We address the issue of class
imbalance by using techniques such as scale_pos_weight in XGBoost
and adjusting classification thresholds to ensure high recall without
sacrificing precision.

Deep learning evaluation: We investigate the limitations of
deep learning models, demonstrating that while neural networks
have potential, they often underperform on smaller biological
datasets due to overfitting and insufficient optimization.
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Feature importance: Through detailed analysis and
visualization of feature importance, we provide valuable insights
into the key biological features, such as Percent Solvent Content and

Matthews Coefficient, that drive the classification tasks.

This research contributes to the growing body of knowledge in
bioinformatics by optimizing existing machine learning models for
biological classification tasks, addressing key research gaps, and
offering practical recommendations for future studies.

(7 High-Throughput % Low-Throughput |

Methodology

This study applied machine learning models to classify biological
data from two prominent datasets: the BioGRID Interaction Dataset
and the RCSB PDB Macromolecular Structure Dataset. The goal
was to classify interactions based on experimental methods and
predict solvent content in macromolecular structures. Below is a
detailed description of the steps involved in data preprocessing,
model training, evaluation, and optimization. Figure 1 shows the
full process of the work [16].

RCSB PDB Structure Dataset
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Figure 1: Full procedure of the work.

Datasets used

The study utilized two major biological datasets. The BioGRID
Interaction Dataset is one of the largest repositories of Protein-
Protein Interactions (PPIs) and genetic interactions. This dataset
provides including gene
interaction types, and experimental methods used to validate
interactions. The task was to classify interactions based on whether
they came from high-throughput or low-throughput experimental
methods, a classification that posed challenges due to the
imbalanced nature of the dataset. The second dataset, the RCSB PDB

essential information, identifiers,

Macromolecular Structure Dataset, contains structural information
for proteins, nucleic acids, and other complex molecules. This
dataset includes crucial details such as crystallization methods,
pH, temperature conditions, and solvent content. The primary
classification task was to predict solvent content (high or low)
for macromolecular structures, which is an important factor in
understanding protein stability and interaction properties.

Data preprocessing

Data preprocessing was a critical first step. The initial datasets
contained several missing values, so rows with missing values were
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dropped to ensure that only complete records were used for training.
This was important for maintaining the accuracy and integrity of
the models. For feature selection, relevant variables were chosen
for both datasets. In the BioGRID Interaction Dataset, features
such as Official Symbol Interactor A, Official Symbol Interactor B,
Experimental System Type, and others were selected. Similarly, for
the RCSB PDB Dataset, features like Matthews Coefficient, Percent
Solvent Content, pH, Temperature, and Number of Residues were
included. Categorical variables such as Experimental Method in
the BioGRID dataset and Crystallization Method in the PDB dataset
were transformed into numerical values using Label Encoding.
Additionally, target variables were created: for the BioGRID dataset,
the target was a binary classification of high-throughput vs. low-
throughput methods, and for the RCSB PDB dataset, the target
variable classified solvent content as high (greater than 50%) or
low.

Model training and hyperparameter tuning

Four different machine learning models were applied to the
datasets. The first model used was the Random Forest Classifier,
which was chosen due to its robustness in handling categorical and
continuous features and its ability to assess feature importance.
To optimize the performance of the Random Forest model,
RandomizedSearchCV was employed for hyperparameter tuning.
This included tuning parameters such as n_estimators, max_depth,
and min_samples_split. Feature importance from the Random
Forest model provided insights into the most influential predictors,
such as Percent Solvent Content and Matthews Coefficient. The
second model implemented was XGBoost, a gradient boosting
algorithm known for its efficiency and predictive performance.
Similar to Random Forest, XGBoost was optimized through
RandomizedSearchCV, tuning parameters such as n_estimators,
learning_rate, max_depth, and subsample. A key aspect of improving
the XGBoost model involved threshold adjustment. By lowering the
classification threshold (e.g., to 0.3), we prioritized recall, making
the model more sensitive to detecting positive cases (i.e., high-
throughput interactions and high solvent content), which improved
its ability to capture more relevant instances.

The third model used was Support Vector Machines (SVM)
with a linear kernel. SVM is particularly well-suited for binary
classification tasks, and StandardScaler was used to standardize
the features before training the model. This ensured that the SVM
model was not biased by the varying scales of the features. The
performance of the SVM model was compared to Random Forest
and XGBoostin terms of accuracy and recall. Finally, a Deep Learning
Model (DNN) was implemented using Keras with TensorFlow as the
backend. The neural network consisted of two hidden layers with
ReLU activation and a sigmoid output layer for binary classification.
The model was trained for 10 epochs with a batch size of 32, using
binary cross-entropy loss for optimization. Although deep learning
models are powerful, they often face challenges when dealing with
smaller datasets, as in this case, where performance was not as
strong as the traditional models.

Data splitting

To ensure the robustness and generalizability of the models,
the datasets were split into three subsets: training (70%),
validation (15%), and test (15%) sets. The training set was used to
train the models, while the validation set was used for tuning the
hyperparameters. The test set provided an unbiased evaluation of
the final models. Stratified sampling was applied to preserve the
distribution of the target variable across the training, validation,
and test sets, which is crucial for dealing with imbalanced datasets.

Model evaluation

The models were evaluated using a range of performance
metrics. These metrics included accuracy, precision, recall, and F1
score. Accuracy measures the proportion of correct predictions,
while precision assesses the proportion of true positives among
predicted positives. Recall evaluates the proportion of true positives
among actual positives, and F1 score provides a balanced measure
of precision and recall. To assess the model’s performance in greater
detail, confusion matrices were generated for each model. These
matrices helped visualize the true positives, false positives, true
negatives, and false negatives, providing a clearer understanding
of where each model succeeded and failed. Additionally, feature
importance was assessed using the Random Forest and XGBoost
models to identify key variables, such as Percent Solvent Content
and Matthews Coefficient, that contributed to the classification.

Hyperparameter optimization

RandomizedSearchCV was employed for both XGBoost and
Random Forest models to optimize their hyperparameters, allowing
us to explore a wide range of parameter values and find the best
combination for each model. For XGBoost, parameters such as
learning rate, n_estimators, and max_depth were tuned, while for
Random Forest, n_estimators, max_depth, and min_samples_split
were adjusted. This hyperparameter optimization step was crucial
for improving model performance, especially in terms of recall.

Result Analysis

Classification of BioGRID interaction dataset (first
dataset) with four models

In Part 1, four machine learning models, Random Forest,
XGBoost, SVM, and Deep Learning, were applied to classify protein-
protein interactions in the BioGRID Interaction Dataset. The task
was to predict whether an interaction was derived from high-
throughput experiments or low-throughput methods. The models
demonstrated strong performance across various evaluation
metrics. Random Forest and XGBoost both achieved high accuracy,
precision, recall, and F1 score, indicating that both models were
effective for this classification task. Random Forest was particularly
strong in precision, which suggests that it was very good at correctly
identifying positive interactions (i.e., high-throughput interactions).
On the other hand, XGBoost exhibited great recall, which means it
was very good at detecting positive cases. However, this came at
the cost of precision, as XGBoost produced more false positives
compared to Random Forest. The Deep Learning model and SVM
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also showed reasonable results but performed slightly worse than
Random Forest and XGBoost. Deep Learning struggled to match the
performance of the traditional models, likely due to the smaller size
of the dataset, which may not have been sufficient for training an
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effective neural network. SVM achieved solid accuracy, but it was
not as effective at detecting positive interactions as XGBoost or
Random Forest. Figure 2 shows the results-
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Figure 2: Accuracy, precision, recall, F1 score of classification on BioGRID interaction dataset.

The results of this part are:

a.  XGBoost achieved an accuracy of 0.8389, with a precision
of 0.8416, recall 0f 0.9927, and an F1 score of 0.9109.

b. Random Forest achieved a higher accuracy of 0.8994,
with a precision of 0.9270, recall of 0.9539, and an F1 score of
0.9403.

c.  Deep Learning, despite its potential, struggled to match
the performance of the traditional models, yielding an accuracy
0f 0.8297, a precision of 0.8297, recall of 1.0, and an F1 score of
0.9069.

d. SVM showed similar performance to Deep Learning,
achieving an accuracy of 0.8297, a precision of 0.8297, recall of
1.0, and an F1 score of 0.9069.

Hyperparameter tuning for random forest and XGBoost

In Part 2, hyperparameter tuning was performed for both
Random Forestand XGBoostusing RandomizedSearchCV toimprove

model performance. After optimizing the hyperparameters, both
models showed improved results. For Random Forest, fine-tuning
parameterslike n_estimators, max_depth,and min_samples_splitled
to better generalization and a further improvement in performance,
particularly in terms of precision. The model continued to excel
in precision, making it ideal for tasks where correctly identifying
high-throughput interactions is crucial. Similarly, XGBoost was
optimized by adjusting hyperparameters such as n_estimators,
learning_rate, and max_depth. This optimization helped to retain
its high recall while maintaining a good balance with precision. The
results confirmed that XGBoost continued to perform excellently in
identifying high-throughput interactions, with a slight emphasis on
recall over precision. The hyperparameter tuning for both models
enhanced their ability to handle biological data and significantly
improved their performance without altering the fundamental
strengths of the models.

The results of this part are (Figure 3):
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Model Comparison: Random Forest vs XGBoost
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Figure 3: Hyperparameter tuning results for random forest and XGBoost.

a. Random Forest’s accuracy improved to 0.9008, with
precision increasing to 0.9174, recall reaching 0.9675, and an

F1 score of 0.9418.

b.  XGBoost’s performance remained strong, with accuracy of
0.8325, precision of 0.8337, recall of 0.9969, and an F1 score of
0.9081.

c.  Interestingly, the number of features was reduced after
Principal Component Analysis (PCA) to three, while Recursive
Feature Elimination (RFE) also selected the top three features,

which were highly relevant for the classification task.

d. Random Forest Confusion Matrix: Shows high true
positives (340,223) for high-throughput interactions and low
false positives (30,618), indicating that it performs excellently
in distinguishing high-throughput from non-high-throughput
interactions (Figure 4).

XGBoost Confusion Matrix: Similar to Random Forest but
with slightly lower performance as reflected in the number of
false positives (69,909). Nonetheless, the model still shows
high recall, indicating strong detection of true positives (Figure
5).
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Figure 4: Random forest confusion matrix.
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XGBoost Confusion Matrix

- 2265

Non-High Throughput

True

= 1084

High Throughput

MNon-High 'Il'hrouthut

350000

300000

G909

250000

200000

= 150000

= 100000

- 50000

High Throughput

Predictied

Figure 5: XGBoost confusion matrix.

Focused improvement on XGBoost

In Part 3, a focused improvement was made on XGBoost by
adjusting the classification threshold to 0.3 to increase the model’s
recall. This change was particularly important in biological tasks
where detecting positive cases is more critical than minimizing
false positives. By lowering the threshold to 0.3, the recall
increased to 99.98%, meaning that the model became more
sensitive to identifying high-throughput interactions. However,
this improvement in recall came at the cost of precision, which

decreased as the model produced more false positives. The trade-
off between precision and recall is important to note, as the model’s
higher sensitivity to positive cases made it ideal for situations
where missing a positive case could have serious consequences,
such as in biological research or drug discovery. Performance on
the test set showed similar results, further indicating that the
threshold adjustment enhanced the model’s generalization ability
while maintaining its strong overall performance in detecting high-
throughput interactions.

XGBoost Model Performance After Threshold Adjustment
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Figure 6: Focused improvement results on XGBoost.
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The results of this part are (Figure 6):

a. The adjusted XGBoost model achieved an accuracy of
0.8343, with precision of 0.8336, recall of 0.9998, and an F1
score of 0.9092.

b.  Test set performance showed similar results, with an
accuracy of 0.8340, precision of 0.8334, recall of 0.9998, and an
F1 score of 0.9090.

c.  The threshold adjustment clearly demonstrated the

trade-off between precision and recall, where XGBoost became
more sensitive to detecting positive cases (high-throughput
interactions) but with more false positives. This adjustment
is particularly useful for tasks where missing positive cases is
more critical than accepting a few false positives.

d.  Confusion Matrix: The confusion matrix for both training
and test sets shows that XGBoost correctly identifies a high
proportion of high-throughput interactions, but a few false
positives and false negatives are present, which is typical in
class-imbalanced problems (Figure 7,8).

XGBoost Confusion Matrix
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Figure 7: XGBoost confusion matrix after focused improvement.
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Figure 8: XGBoost test set confusion matrix after focused improvement.
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Classification of RCSB PDB dataset (Second Dataset)
with four models

In Part 4, the same four models, Random Forest, XGBoost, SVM,
and Deep Learning, were applied to the RCSB PDB Macromolecular
Structure Dataset, with the task of predicting whether the
solvent content of a macromolecular structure is high or low.
Once again, Random Forest and XGBoost outperformed the other
models, demonstrating high accuracy, precision, recall, and F1
score. XGBoost had a slight edge in recall, which suggests that it
was slightly better at identifying high solvent content structures
compared to Random Forest. Both models showed that they were

very effective at classifying solvent content, with Random Forest
excelling in precision and XGBoost shining in recall. Deep Learning
struggled again, showing lower accuracy and precision compared
to the traditional models. This can be attributed to the relatively
small size of the dataset and the limited number of training epochs.
SVM performed well overall, but it was slightly behind Random
Forest and XGBoost in terms of recall. Feature importance analysis
revealed that Percent Solvent Content and Matthews Coefficient
were the most significant features for both Random Forest and
XGBoost, offering crucial insights into which aspects of the data are
most predictive for solvent content classification.

Feature Importance for Random Forest

Temp (K)

Mumber of Chains

Number of Residues
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0.2
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03

Figure 9: Feature importance for random forest.

Feature Importance for XGBoost
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Figure 10: Feature importance for XGBoost.
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The results of this part are (Figure 9,10):

a. Both Random Forest and XGBoost achieved the same
accuracy of 0.9583, with a precision of 1.0, recall of 0.9231, and
F1 score of 0.96.

b.  Deep Learning struggled again, showing a significantly
lower performance with accuracy of 0.5833, precision of 0.6,
recall of 0.6923, and F1 score of 0.6429. This suggests that deep
learning models may require more data or training epochs to
improve.

c.  SVM performed well, achieving an accuracy of 0.9167,
a precision of 1.0, recall of 0.8462, and an F1 score of 0.9167.
While solid, SVM did not perform as well in recall compared to
Random Forest and XGBoost.

We have also provided confusion matrices of the important
models (Figure 4,5,7,8) to aid interpretability and these numerically
measure the true positives, false positives, the true negatives and
the false negatives. These matrices demonstrate the precision recall
trade-off directly such that when XGBoost has a high recall (99.98),
it experiences an increase in false positives but Random Forest
does not and has a higher precision. The visual and quantitative
disaggregation helps in the selection of models on the basis of
application-specific considerations, including giving sensitivity in
interaction detection or accuracy in structural classification a high
priority.

Comprehensive model comparison and insights

After analyzing the results from both datasets, it became clear
that Random Forest and XGBoost were the top performers across
all experiments. Random Forest was particularly effective for
tasks that required high precision, making it ideal for applications
where accurately identifying positive interactions or structures is
critical. XGBoost, on the other hand, excelled in recall, making it
more suitable for tasks where it is crucial to detect as many positive
cases as possible, even at the cost of some false positives. Both
Deep Learning and SVM had competitive performances but did
not outperform Random Forest and XGBoost when both precision
and recall were considered together. Deep Learning struggled with
smaller datasets and was less effective than traditional models,
while SVM had solid performance but failed to capture positive
cases as effectively as the other models.

This research is valuable for several reasons: It applies robust
machine learning models to real-world biological datasets, such as
the BioGRID Interaction Dataset and RCSB PDB Macromolecular
Structure Dataset, which are essential for understanding biological
interactions and macromolecular properties. The study explores
model optimization techniques, including hyperparameter tuning
and threshold adjustments, to improve model performance. This
demonstrates how to extract the best performance from Random
Forest and XGBoost. It fills an important gap by providing a
framework for applying machine learning models to biological
classification tasks, such as interaction classification and solvent
content prediction in macromolecular structures, making it easier
for researchers to adopt these models in future studies. The study

highlights the trade-off between precision and recall, which is
particularly valuable for high-stakes biological applications, where
missing positive interactions or incorrect classification of solvent
content could have serious consequences.

Although our experiment used scale_pos_weight and threshold
adjust to reduce the imbalance in classes, it might be improved by
a more advanced method, like Synthetic Minority Over-sampling
Technique (SMOTE), adaptive sampling, or learning cost-sensitive
in future studies to enhance the strength of the model further. Also,
deep learning models appeared to perform poorly because of the
limitation of the size of the datasets and because of the presence of
class imbalance, resulting in overfitting and lower generalizability.
The size of datasets can be increased, data augmentation can
be applied to suit biological characteristics or pre-trained
architectures could be used to address these limitations in future
implementations.

Gaps filled and improvements made

i. Threshold Adjustment: The adjustment of the
classification threshold in XGBoost to optimize recall was a
crucial improvement, allowing the model to focus on high
recall, which is essential for detecting rare positive interactions
in biological applications.

ii. =~ Model Fine-Tuning: By performing hyperparameter
optimization for Random Forest and XGBoost, the study
ensures that these models operate at their maximum potential,
improving their generalizability and predictive power.

iii.  Data Insights: The feature importance analysis in Part 4
revealed which features, such as Percent Solvent Content and
Matthews Coefficient, are most predictive for the classification
task, helping to prioritize these factors in future research.

This study not only optimizes machine learning models for
biological classification tasks but also provides valuable insights
that will help drive future improvements in the prediction of
biological interactions and macromolecular features.

Conclusion and Future Work

In conclusion, this research effectively demonstrated the
application of machine learning models, including Random Forest,
XGBoost, SVM, and Deep Learning, for classifying biological
interactions and predicting macromolecular structural features
from two distinct datasets: the BioGRID Interaction Dataset and the
RCSB PDB Macromolecular Structure Dataset. The study highlighted
that Random Forest and XGBoost were the most effective models,
with Random Forest excelling in precision and XGBoost showing
superior recall. Through hyperparameter tuning and threshold
adjustment, we were able to enhance model performance,
particularly in terms of recall, while maintaining high precision
in Random Forest. This research also revealed the importance of
specific features, such as Percent Solvent Content and Matthews
Coefficient, in driving accurate predictions. For future work, this
study paves the way for further optimizations and applications
of these models in bioinformatics. Exploring deep learning with
larger datasets and more epochs could improve its performance,
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as could the integration of additional features and more complex
architectures. Moreover, the incorporation of ensemble methods
or hybrid models combining the strengths of multiple classifiers
may further enhance prediction accuracy. Finally, the application of
these models to other biological classification tasks, such as drug-
target interactions or gene-disease associations, would provide a
broader scope for their utility in advancing biomedical research.
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