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Introduction
Kitchen waste (KW) constitutes a major portion of municipal solid waste (MSW), with 

global generation exceeding 1.3 billion tons annually, of which 40–60% is organic matter 
including food residues and packaging plastics [1,2]. The persistence of non-biodegradable 
plastics like polyethylene (PE), polypropylene (PP) and polystyrene (PS) exacerbates 
environmental issues such as landfill overflow and greenhouse gas emissions [3,4]. Pyrolysis, 
a thermal decomposition process at 300-900 °C in oxygen-free conditions, has emerged as a 
promising technology for converting KW and plastics into value-added products (e.g., bio-oil, 
syngas), thereby promoting waste-to-energy recovery and circular economy principles [5,6]. 
This review aims to synthesize recent advances in pyrolysis of plastics in KW, focusing on 
process characteristics, kinetic insights, synergistic effects and catalytic applications to guide 
future research and implementation.

Pyrolysis characteristics of kitchen waste and plastics
Pyrolysis involves stages such as drying (100-200 °C), active decomposition (200-500 °C) 

and char formation (>500 °C). KW components (e.g., starch, proteins) decompose at lower 

Crimson Publishers
Wings to the Research

Mini Review

*Corresponding author: Dahai Zheng, 
MIZUDA Group Co., Ltd., Huzhou 313001, 
China

Submission:  November 10, 2025
Published:  November 19, 2025

Volume 5 - Issue 3

How to cite this article: Bin Kuang, Yang 
Cai and Dahai Zheng*. The Pyrolysis of 
Plastics in Kitchen Waste. Ann Chem 
SciRes.5(3).ACSR.000612.2025. 
DOI: 10.31031/ACSR.2025.05.000612

Copyright@ Dahai Zheng, This article is 
distributed under the terms of the Creative 
Commons Attribution 4.0 International 
License, which permits unrestricted use 
and redistribution provided that the 
original author and source are credited.

1Annals of Chemical Science Research

   ISSN : 2688-8394

Abstract
Kitchen waste (KW) and plastic waste pose significant environmental challenges due to their increasing 
generation and non-biodegradability. Pyrolysis, a thermochemical process conducted in an inert 
atmosphere, offers a sustainable solution by converting these wastes into valuable products like bio-oil, 
syngas, and char. This mini review comprehensively analyzes the pyrolysis of plastics in KW, covering 
fundamental principles, characteristics, kinetic mechanisms, synergistic effects, catalytic applications, 
and product distributions. Key findings indicate that co-pyrolysis of KW with plastics (e.g., polyethylene, 
polypropylene) enhances efficiency through synergistic interactions, reducing activation energies by 15-
40kJ/mol and increasing bio-oil yields up to 66%. Catalysts such as zeolites and natural materials (e.g., 
seashells) further improve product selectivity by promoting deoxygenation and cracking. Challenges 
include waste heterogeneity and economic viability, but advancements in microwave-assisted pyrolysis 
and integrated systems show promise for scalability. This review highlights the potential of pyrolysis 
to contribute to circular economy goals by transforming waste into renewable energy sources. Future 
research should focus on process optimization and life-cycle assessments.
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temperatures, yielding oxygenated compounds like aldehydes and 
ketones, while plastics (e.g., PP, PS) require higher temperatures 
(300-600 °C) and produce hydrocarbons due to their polymer 
structure [2,7]. Thermogravimetric analysis (TGA) shows that 
KW has high moisture (up to 53.3%) and ash content, leading to 
mass losses of 60-85%, whereas plastics exhibit near-complete 
volatilization with minimal residue [1,8]. Co-pyrolysis of KW and 
plastics alters decomposition profiles; for instance, blending KW 
with PP shifts onset temperatures lower and enhances volatile 
release through hydrogen transfer, increasing bio-oil yields by up 
to 20% [5,7].

Kinetic mechanisms and synergistic effects
Kinetic analysis using model-free methods (e.g., Kissinger-

Akahira-Sunose, Flynn-Wall-Ozawa) reveals activation energies 
(Ea) of 25-271kJ/mol, with plastics showing higher Ea due to 
stable carbon-carbon bonds [9-12]. Co-pyrolysis reduces Ea by 
15-40kJ/mol through synergistic effects, where hydrogen radicals 
from plastics deoxygenate KW-derived intermediates, improving 
hydrocarbon production [13]. Studies on KW-PP mixtures 
demonstrate increased aliphatic hydrocarbons (up to 44.6%) and 
reduced carboxylic acids, with synergy peaking at 300-500 °C 
[2,7]. Microwave-assisted pyrolysis further enhances kinetics by 
providing uniform heating; for example, Fe/SiC catalysts lower Ea 
for ABS plastic from 140.5kJ/mol to 63.7kJ/mol [10].

Catalytic pyrolysis and product enhancement
Catalysts like zeolites (ZSM-5) and natural materials (seashells, 

cuttlebone) improve pyrolysis efficiency by promoting cracking 
and deoxygenation. ZSM-5 increases aromatic hydrocarbons in 
bio-oil by up to 40%, while CaCO3-based catalysts reduce Ea by 
28.5% for KW-plastic blends [14]. Product analysis shows that 
KW-derived bio-oil has a lower heating value (LHV) of 14-18MJ/
kg due to oxygen content, whereas plastic-derived oil achieves 
LHV of 30-42MJ/kg, resembling diesel [15]. Co-pyrolysis optimizes 
product quality by balancing hydrogen and oxygen, with potential 
applications in fuel production and chemical synthesis [16,17].

Conclusion
Pyrolysis of plastics in kitchen waste effectively addresses 

waste management challenges while producing renewable energy 
sources. Key advancements include synergistic co-pyrolysis 
reducing activation energies, catalytic methods enhancing product 
selectivity, and microwave technology improving efficiency. 
However, challenges such as waste heterogeneity and economic 
scalability remain. Future work should focus on integrated 
processes, advanced catalysts and life-cycle assessments to enable 
commercial adoption. Pyrolysis represents a critical step toward 
achieving sustainability goals through circular economy practices.
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