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Abstract

Kitchen waste (KW) and plastic waste pose significant environmental challenges due to their increasing
generation and non-biodegradability. Pyrolysis, a thermochemical process conducted in an inert
atmosphere, offers a sustainable solution by converting these wastes into valuable products like bio-oil,
syngas, and char. This mini review comprehensively analyzes the pyrolysis of plastics in KW, covering
fundamental principles, characteristics, kinetic mechanisms, synergistic effects, catalytic applications,
and product distributions. Key findings indicate that co-pyrolysis of KW with plastics (e.g., polyethylene,
polypropylene) enhances efficiency through synergistic interactions, reducing activation energies by 15-
40k]J/mol and increasing bio-oil yields up to 66%. Catalysts such as zeolites and natural materials (e.g.,
seashells) further improve product selectivity by promoting deoxygenation and cracking. Challenges
include waste heterogeneity and economic viability, but advancements in microwave-assisted pyrolysis
and integrated systems show promise for scalability. This review highlights the potential of pyrolysis
to contribute to circular economy goals by transforming waste into renewable energy sources. Future
research should focus on process optimization and life-cycle assessments.
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Introduction

Kitchen waste (KW) constitutes a major portion of municipal solid waste (MSW), with
global generation exceeding 1.3 billion tons annually, of which 40-60% is organic matter
including food residues and packaging plastics [1,2]. The persistence of non-biodegradable
plastics like polyethylene (PE), polypropylene (PP) and polystyrene (PS) exacerbates
environmental issues such as landfill overflow and greenhouse gas emissions [3,4]. Pyrolysis,
a thermal decomposition process at 300-900 °C in oxygen-free conditions, has emerged as a
promising technology for converting KW and plastics into value-added products (e.g., bio-oil,
syngas), thereby promoting waste-to-energy recovery and circular economy principles [5,6].
This review aims to synthesize recent advances in pyrolysis of plastics in KW, focusing on
process characteristics, kinetic insights, synergistic effects and catalytic applications to guide
future research and implementation.

Pyrolysis characteristics of kitchen waste and plastics

Pyrolysis involves stages such as drying (100-200 °C), active decomposition (200-500 °C)
and char formation (>500 °C). KW components (e.g., starch, proteins) decompose at lower
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temperatures, yielding oxygenated compounds like aldehydes and
ketones, while plastics (e.g.,, PP, PS) require higher temperatures
(300-600 °C) and produce hydrocarbons due to their polymer
structure [2,7]. Thermogravimetric analysis (TGA) shows that
KW has high moisture (up to 53.3%) and ash content, leading to
mass losses of 60-85%, whereas plastics exhibit near-complete
volatilization with minimal residue [1,8]. Co-pyrolysis of KW and
plastics alters decomposition profiles; for instance, blending KW
with PP shifts onset temperatures lower and enhances volatile
release through hydrogen transfer, increasing bio-oil yields by up
to 20% [5,7].

Kinetic mechanisms and synergistic effects

Kinetic analysis using model-free methods (e.g., Kissinger-
Akahira-Sunose, Flynn-Wall-Ozawa) reveals activation energies
(Ea) of 25-271Kk]J/mol, with plastics showing higher Ea due to
stable carbon-carbon bonds [9-12]. Co-pyrolysis reduces Ea by
15-40Kk]J/mol through synergistic effects, where hydrogen radicals
from plastics deoxygenate KW-derived intermediates, improving
hydrocarbon production [13]. Studies on KW-PP mixtures
demonstrate increased aliphatic hydrocarbons (up to 44.6%) and
reduced carboxylic acids, with synergy peaking at 300-500 °C
[2,7]. Microwave-assisted pyrolysis further enhances kinetics by
providing uniform heating; for example, Fe/SiC catalysts lower Ea
for ABS plastic from 140.5k]/mol to 63.7k]/mol [10].

Catalytic pyrolysis and product enhancement

Catalysts like zeolites (ZSM-5) and natural materials (seashells,
cuttlebone) improve pyrolysis efficiency by promoting cracking
and deoxygenation. ZSM-5 increases aromatic hydrocarbons in
bio-oil by up to 40%, while CaCO3-based catalysts reduce Ea by
28.5% for KW-plastic blends [14]. Product analysis shows that
KW-derived bio-oil has a lower heating value (LHV) of 14-18M]/
kg due to oxygen content, whereas plastic-derived oil achieves
LHV of 30-42M]/kg, resembling diesel [15]. Co-pyrolysis optimizes
product quality by balancing hydrogen and oxygen, with potential
applications in fuel production and chemical synthesis [16,17].

Conclusion

Pyrolysis of plastics in kitchen waste effectively addresses
waste management challenges while producing renewable energy
Key advancements include synergistic co-pyrolysis
reducing activation energies, catalytic methods enhancing product
selectivity, and microwave technology improving efficiency.
However, challenges such as waste heterogeneity and economic
scalability remain. Future work should focus on integrated
processes, advanced catalysts and life-cycle assessments to enable
commercial adoption. Pyrolysis represents a critical step toward
achieving sustainability goals through circular economy practices.

sources.
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