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Mini Review
Metals, such as transition metals and heavy metals, can be present as impurities in APIs 

due to various reasons, including raw material contamination, catalyst residues from synthesis 
processes, or interaction with equipment during manufacturing. These metal impurities can 
be harmful and have potential toxicological effects on human health. The use of resins for 
the reduction of metals in active pharmaceutical ingredients (APIs) is an important aspect 
of pharmaceutical manufacturing to ensure the purity, quality, and safety of pharmaceutical 
products. By effectively removing metal impurities, resins play a crucial role in meeting 
regulatory requirements and ensuring patient well-being. Further research and development 
in resin technology and process optimization are necessary to advance metal reduction 
methods in pharmaceutical manufacturing. Number of cost-effective and scalable methods 
have been developed to remove the metal impurities [4-11]. Merck group and Astra Zeneca 
developed carbon or silica gel adsorbents to remove these metal impurities [12,13]. Astra 
Zeneca successfully demonstrated this application on polit scale [13]. Resins functionalized 
with chelating ligands, such as iminodiacetic acid (IDA) or iminodiacetate (IDA) resin, are 
commonly employed for metal reduction [14]. These resins possess high affinity for metal ions 
due to their specific coordination chemistry. Metal ions bind to the resin’s chelating groups, 
allowing for their selective removal from the API solution. The resin’s capacity, selectivity, and 
compatibility with the API solution are critical considerations during resin selection (Figure 
1). Some of the examples of resins were provided in the below Table 1. 
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Abstract
To overcome the unmet needs of patients, the production of active pharmaceutical ingredients (APIs) 
with limited lead timelines has become critical. Along with timelines to secure robust, economical and 
greener processes, the utilization of metal catalysts (palladium, rhodium and ruthenium catalysts) 
has become vital in the pharmaceutical industry. The presence of metal impurities in APIs can pose 
significant risks to human health and compromise the quality of pharmaceutical products. According 
to the ICH Q3D guideline, the permitted daily exposure (PDE) for metals in APIs is established based on 
toxicological data and the PDE values are expressed in micrograms per day and vary for different metals 
[1,2]. It is important to note that the acceptable limits for metal impurities can vary depending on factors 
such as the route of administration, patient population, and potential toxicity of the metal. In general, the 
metal impurities in APIs must be controlled to low levels (<10µg/g) [3]. Therefore, it is crucial to develop 
effective purification methods to reduce metal content in APIs. Resins have emerged as valuable tools 
in the pharmaceutical industry for the selective removal of metal impurities. This review provides an 
overview of the use of resins for the reduction of metals in APIs.
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Figure 1: General mechanism for chelation of metal to scavenger.

Table 1: Some examples of metal scavengers/ resins used in production of APIs.

Type Name Matrix Binding Metals Utilized for Production of API

Chelating Resins

Chelex® Styrene divinylbenzene copolymer functionalized 
with iminodiacetic acid (IDA) groups Cu, Ni and Zn Melatonin agonist APIs [15]

DOWEX™ Polystyrene divinylbenzene matrix functionalized 
with phosphonic acid groups. Pb, Cd and Hg Trimercaptotriazine [16]

SiliaMetS DMT Silica bound with 2,4,6-trimercaptotriazine, 
TMT)

As, Ir, Ni, Os, Pd, Pt, 
Rh, Ru & Se Mavatrep [17]

The process involves passing the API solution through a resin-
packed column, where metal impurities interact with the resin 
while the desired API and other impurities pass through. The 
bound metal ions can be subsequently eluted from the resin using 
appropriate elution solutions. Resins for metal reduction are also 
often used in combination with other purification techniques, 
such as filtration, chromatography, or precipitation, to achieve the 
desired purity level for APIs. These multiple purification steps help 
ensure that the final product meets regulatory requirements and 

quality standards. The choice of resin and operating conditions 
(e.g., pH, flow rate) depends on the specific metal impurities and the 
API being processed. Optimization of resin selection and process 
conditions (equivalents of scavenger/resin, reaction temperature 
and pH of the aqueous reaction mixtures (Figure 2) [18,19] is 
essential to ensure efficient metal reduction. Factors such as resin 
capacity, selectivity and stability under process conditions should 
be evaluated. Additionally, the compatibility of the resin with the 
API and the specific metal impurities must be considered [18].

Figure 2: Factors involved in effective metal scavenging.
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Manufacturers are responsible for conducting appropriate 
analytical testing to ensure compliance with the established metal 
impurity limits. These tests typically involve validated analytical 
methods, such as atomic absorption spectroscopy (AAS), [20] 
inductively coupled plasma (ICP) techniques, [21] or other 
suitable analytical techniques capable of accurately detecting and 
quantifying metal impurities in APIs.

Conclusion
In conclusion, the use of resins for metal reduction in active 

pharmaceutical ingredients is an essential purification step in 
pharmaceutical manufacturing. These resins provide an effective 
means to remove metal impurities, thereby ensuring the safety and 
quality of pharmaceutical products. The choice of resin and process 
conditions should be optimized based on the specific requirements 
of the API and the target metal impurities.
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