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Introduction 
Transformer models are becoming significant tools to support research and development 

efforts in various areas of chemistry, with many applications based on the open-source BERT 
[1] and RoBERTa [2] models. These include ChemBERTa [3], MolBERT [4]; SMILES-BERT [5]; 
and most recently, ChemBERTa-2 [6]. ChemBERTa-2 was trained using masked-language 
modeling (MLM) and multi-task regression (MTR) on a dataset of 77 million SMILES strings. 
SMILES, a widely used text representation of molecules, has a straightforward vocabulary 
with very few grammar rules that encodes each molecule using a sequence of characters that 
symbolize atoms and bonds [7]. While SMILES has become the dominant language for training 
chemical transformer models, emerging research suggests that SELFIES, an alternative 
chemical language, could be a more effective choice for molecular encoding [8].

Recent advancements have shown that foundational models such as the generative pre-
trained transformer (GPT) can also be adapted to solve various chemistry and materials 
science tasks by simply prompting them with natural language chemistry-related questions 
[9,10]. GPT-based models can learn from just a few examples and perform tasks such as 
classification and regression without modifying their architecture or training methods. This 
breakthrough demonstrates the potential of large language models (LLMs) to extend beyond 
their original applications and solve increasingly complex problems in chemistry and other 
fields.

This paper demonstrates the effectiveness of transformer models, specifically the newly 
released ChemBERTa-2, in predicting physical-chemical property endpoints with comparable 
accuracy to standard machine-learning techniques without the need for descriptor calculation 
and selection. We illustrate this by fine-tuning the ChemBERTa-2 model to predict aqueous 
solubility, achieving a level of performance like that reported in recent literature [11]. This 
exemplifies the potential of transformer models to provide a convenient and straightforward 
method for property prediction directly from structure (SMILES).
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Abstract
Traditional machine-learning techniques for predicting physical-chemical properties often require 
the calculation and selection of molecular descriptors. Calculating descriptors can be time-consuming 
and computationally expensive, and there is no guarantee that all relevant and significant features 
will be captured, especially when trying to predict novel endpoints. In this study, we demonstrate the 
effectiveness of transformer models in predicting physical-chemical endpoints by fine-tuning the open 
ChemBERTa-2 model to predict aqueous solubility directly from structure with comparable accuracy 
to traditional machine-learning techniques, without the need for descriptor calculation and selection. 
Our findings suggest that transformer models have the potential to provide an efficient and streamlined 
method for predicting physical-chemical properties directly from molecular structure.
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Method
Lowe et al. [11] recently utilized a random forest machine 

learning technique to predict aqueous solubility on a high-quality 
curated dataset of experimentally determined solubility values. To 
compare their results with those of a transformer model, we fine-
tuned the ChemBERTa-2-based model, ChemBERTa-77M-MTR, 
which is available on Hugging Face [12], using the same dataset. We 
began by randomly splitting the dataset (N=10207) into training 
(N=8165), validation (N=1020), and test sets (N=1022) and trained 
the model using the Trainer class from the transformer’s library 
with the adamw_torch optimizer. We monitored the performance of 
the model on the validation set at intervals of ten steps during the 
training process, enabling us to use the early stopping technique to 
prevent overfitting while maintaining model accuracy. That is, we 
ceased training when the validation loss stopped improving.

After optimizing the tuning parameters through our fine-
tuning process, we trained a new transformer model on the 

original training set from the aqueous solubility paper [11]. We 
then utilized our newly created transformer model to predict the 
aqueous solubility of the original test set compounds from the same 
paper. The code for fine-tuning the ChemBERTa-77M-MTR model 
and its application to predicting aqueous solubility is available on 
GitHub [13].

Results
Our results show that by fine-tuning the ChemBERTa-77M-

MTR model, a chemical language transformer that is based on the 
Google-developed BERT (Bidirectional Encoder Representations 
from Transformers) pre-trained natural language processing model, 
we were able to accurately predict aqueous solubility directly from 
structure encoded in the language of SMILES. Our performance 
metrics (R2: 0.822, RMSE: 0.938, MAE: 0.681, ρ: 0.899, p-value: 
<0.001) are comparable to those of previously published models. 
Please refer to Table 1 and Figure 1 for a more detailed comparison.

Table 1: Performance Metrics for Random Forest, Transformer Model, and Fine-Tuned Transformer Model

Training Set Validation Set Test Set

N R2 RMSE N R2 RMSE N R2 RMSE

RF 7655 0.97 0.41 - - - 2552 0.81 0.98

TM 7655 0.87 0.81 - - - 2552 0.81 1.01

FTTM 8165 0.87 0.82 1020 0.83 0.93 1022 0.82 0.94

Table Abbreviations: N-Number of points, R2-The coefficient of determination, RMSE-Root mean square error, RF-
Random Forest, TM-Transformer model, FTTM-Fine-tuned transformer model.

Figure 1: Test set aqueous solubility – predicted vs. measured for the fine-tuned ChemBERTa-77M-MTR 
transformer model (ρ: 0.899, p-value: < 0.001) colored by absolute error (AE).

The five molecules with the largest absolute error, see Figure 1, 
have the following SMILES (AE): 

S=C=NC1C=CC(Br)=CC=1 (3.75),

CN(C)C(=O)NC1=CC(Cl)=C(C=C1)SC(F)(F)Cl (3.77),

NC1C=C(N)C(=CC=1)N=NC1=CC(=CC=C1)N=NC1=CC=C(N)
C=C1N (4.04),
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CC1OC(OCC2OC(OC3=CC4OC(=CC(=O)C=4C(O)=C3)C3C=C(O)
C(=CC=3)OC)C(O)C(O)C2O)C(O)C(O)C1O (4.62),

C1CC2=CC3=CC4=CC=CC=C4C=C3C3=CC=CC1=C23 (5.12). 

The complexity of these molecules, which feature uncommon 
functional groups, multiple halogens (chlorine and fluorine), 
polycyclic structures with multiple nitrogen and oxygen atoms, and 
intricate polycyclic aromatic hydrocarbon configurations, makes it 
difficult to predict their solubility values and reflects the model’s 
lack of knowledge about these compounds.

Discussion
We fine-tuned the ChemBERTa-77M-MTR model to predict 

aqueous solubility and compared its performance with the results 
of a previously published random forest model. The results indicate 
that the fine-tuned transformer model can accurately predict 
aqueous solubility directly from SMILES, with performance metrics 
comparable to those found in previously published studies [11]. 
However, a limitation of the model is that it may have difficulty 
predicting solubility values for unusual or complex molecules, but 
this is not necessarily surprising.

This study demonstrates the potential of transformer models 
in providing an efficient and streamlined method for property 
prediction directly from structure. This approach does not require 
descriptor calculation and selection. By not using descriptors, 
transformer models may seem more difficult to interpret. However, 
the attention heads of these models learn to assign greater weight 
to active functional groups in the sequence of tokenized atoms. 
By leveraging attention mechanisms, it is possible to interpret the 
model from a physical-chemical perspective. This approach, though 
beyond the scope of this article, allows one to identify the features 
of the molecule that contribute most significantly to the predicted 
property, providing valuable insights into the underlying chemistry, 
potentially discovering new insights that may be missed when 
using standard descriptor-based methods [6,14].

Conclusion
The research presented in this paper showcases the promise 

of transformer models, specifically the recently released 
ChemBERTa-2, in accurately predicting physical-chemical property 
endpoints without the need for descriptor calculation and selection. 
By fine-tuning the ChemBERTa-77M-MTR model to predict aqueous 
solubility, we achieved comparable performance to previously 
published models [11]. These results demonstrate the usefulness 
of transformer models in the field of chemistry. Moreover, this 

study highlights the potential of large language models, in general, 
to tackle complex problems in various fields. Further research is 
needed to fully explore the capabilities of transformer models in 
chemistry research and development.
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