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Introduction
Buildings currently represent 36% of global energy consumption and 37% of global 

greenhouse gas emissions, according to U.N. data [1]. In reducing carbon emissions in 
buildings for achieving zero emissions by 2050, the human factor plays a crucial role. Many 
studies showed that approximately 10% to 40% of the energy consumption in buildings can be 
saved with occupancy information [2,3]. How to estimate accurate occupancy has increasingly 
become a hot topic. On the other hand, With the rapid development of artificial intelligence 
(AI) and computer vision, image/video analysis technologies have been widely applied in 
buildings. This mini review will present and reveal the advanced technology of vision-based 
building occupancy estimation. Finally, the challenges and future trends are provided.

Mini Review
In terms of captured visual information, vision-based building occupancy estimation 

methods can be divided mainly into scene-based counting and line-based counting. In terms 
of different installed camera locations, there are two visual situations: room interior and 
entrance.

(1) For scene-based counting methods (SCMs), cameras are usually installed inside the 
rooms. Captured videos are analyzed by AI and computer vision technologies. Most studies 
apply people detection algorithms to estimate indoor occupancy (e.g., YOLO [4]). They are 
mainly divided into body and head detection. Body detection methods extract hand-crafted or 
deep features for body recognition [5]. Considering complex indoor scenes, head detection has 
gradually become the mainstream SCMs because heads are more visible [6]. As for detectors, 
most studies apply general object detectors, but many studies propose specific detectors 
by considering occupants’ knowledge (e.g., head size [7] and head motion information [8]). 
However, many other objects are recognized as occupants (i.e., false positives) because of 
the complex environments; it is hard to deploy cameras to cover the entire room without 
occlusion. Besides, applying the single-frame detectors to estimate occupancy is unstable, thus 
many studies have adopted multi-frame methods to enhance features and remove irregular 
estimation results [9].

(2) For line-based counting methods (LCMs), cameras are usually installed at room 
entrances. Most studies detect and track occupants at entrances. They estimated occupancy 
in buildings by counting passing events. They segment the fore-ground area by background 
subtraction technologies, and track occupants’ moving by trackers (Kalman filter, Deep-sort, 
etc.), and then distinguish moving directions whether occupants arrive or leave doors [10]. 
Cameras at room en-trances are usually installed at different locations: the side or overhead 
views. At the side view, LCMs detect and track occupancy body [11]; at the overhead view, LCMs 
recognize head and shoulder parts [12]. However, errors may occur when many occupants 
simultaneously pass through room entrances [13]. Once an occupant is misrecognized, errors 
will accumulate until manually cleared.
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(3) To mitigate the above limitations and improve the 
estimation performance, many studies have developed fusion 
methods [13-15]. They consider heterogeneous visual information 
by combining LCMs and SCMs to eliminate cumulative errors and 
irregular estimation results. Considering scene knowledge and the 
indoor number of occupants, they adjust or automatically switch 
LCMs and SCMs at the people level to obtain more fine-grained 
estimation results.

Challenges and Future Trends
To achieve accurate occupancy estimation for building energy-

saving, although existing methods have achieved remarkable 
progress, they suffer from inherent limitations:

A. Complex indoor scenes, occlusion, and illumination 
have severe influence on SCMs. Occupants are often occluded 
by other objects (e.g., tables, chairs, computers). Moving 
occupants cause significant variations in scale, pose, texture, 
and illumination.

B. It is generally known that datasets are critical for AI, while 
public building visual occupancy datasets are lacking.

C. Vision-based methods provide fine-grained information 
but will cause leakage of the privacy problem.

D. Many studies apply AI neural networks, achieving state-
of-the-art (SOTA) performance. However, when people deploy 
detectors and trackers in buildings, how to make AI more 
reliable is a big challenge.

E. It is hard to clear cumulative errors only by LCMs.

To address the above challenges, future research can focus on 
the following aspects:

a) Developing advanced sensor fusion technologies by 
machine-learning algorithms for occupancy estimation.

b) Collecting and establishing multi-model occupancy 
datasets in buildings.

c) Before practical deployment, the verification, testing, 
adversarial attack, and defense of the deep neural network 
become necessary.

d) Applying neural network compression technologies on AI 
and IoT edge computing devices to enable smart buildings and 
reduce the communication delay.

e) Considering federated learning to meet the requirements 
of user privacy protection, and data security. In particular, each 
edge collects data and trains local machine learning models, and 
only uploads parameters to the server, which largely decreases 
the risk of data privacy.

Conclusion
Occupancy information is important to building HVAC system 

control and energy-saving. This paper reviews recent vision-based 

occupancy estimation methods, including technical details and 
limitations. Challenges and future trends are presented, including 
datasets, edge computing, and federated learning.
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