
[image: cover]

[image:]

Bioinformatics Programming for Bioavailability
Analysis of Sequence Patterns in Public Genomic
Databases

Changsu Dong1, Roy Lee1, Joseph Sayad2,
and Konstantinos Krampis1,2,3*

1Belfer Research Building, Weill Cornell Medical College and Hunter College, USA

2Department of Biological Sciences, Hunter College, USA

3Department of Physiology and Biophysics, Cornell University, USA

*Corresponding author:
Konstantinos Krampis, Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell
Medical College, Cornell University, New York, USA, Tel: 2128960461; Email agbiotec@gmail.com

Submission: [image:] April 19, 2018;
Published: [image:] May 10, 2018

Abstract

In this study we present a novel bioinformatics software for the analysis of bioavailability of short amino acid peptides, in various proteins found
across four phylogenetic kingdoms of Archaea, Bacteria, Mammals and Plants. In order to assess bioavailability of these peptides, we have used a set
of large-scale protein databases from the National Center for Biotechnology Information, and the Basic Local Alignment Search Tools (BLAST+) search
program. In our results we present the counts of peptides matches across the phylogenetic kingdoms, and also in further detail for Gram positive or
negative bacteria. Our bioinformatics software is written in Python and is made available within this publication as freely available for academic and
non-profit use.

Results

In order to understand the prevalence of the short peptide
patterns in various proteins across different kingdoms (Archaea,
Bacteria, Mammals, and Plants), we performed a set of pattern
searches using sequence alignments to the databases of the
National Center for Biotechnology Information [1]. Specifically,
we used the Basic Local Alignment Search Tools (BLAST+) with a
local copy the NCBI databases, and searched the databases with
queries of peptide sequence patterns through the BLASTP protein
alignment subprogram. For our database searches, we used a set
of peptides sequences each six amino acids long, which were first
described in [2], in addition to a set of twelve amino acid peptides
described in [3]. According to these studies, these small protein
peptides are factors in a range of diseases ranging from Parkinson's
and Alzheimer's, to diabetes, mainly due to their role in formation
of oligomer aggregates leading to amyloid plaques. The innovation
of our study was the use of a powerful computer server in our
laboratory, in combination with a novel computer code written in
Python (Methods Section), to data mine the complete set of peptide
matches from the BLAST+ to the NCBI databases. These databases
contain a complete, non-redundant collection of reference genome
sequences representative of all major organisms and phylogenetic
tree clades. Using the NCBI FTP Site, we downloaded the Archaea,
Bacteria, Mammals, and Plants reference databases (Table 1) in
FASTA format [4]. Each kingdom had multiple FASTA files for each genome included
in the kingdom, which were concatenated into a single file for each kingdom.
Following this, the single files were searched for identities to the peptides
from the selected studies described above using the BLAST+ programs, which were run with
the parameters described in the Methods section.

Table 1:Protein databases from NCBI used in our study

[image:]

In our results from the BLAST+ searches of the different short
peptides we observed 3 matches in the Plants and Mammals
phylogenetic kingdoms, and 5 matches for the Archaea (Figure 1).
The most numerous matches were for the Bacteria (266 matches),
which was expected given the large number of species within this
phylogenetic kingdom. In order to further clarify the results, we
separated the Bacterial species in Gram+ (88 hits) or Gram- (178
hits). With this, more detailed numbers are presented for the
different Phyla of the Bacteria in each Gram category. For clarity, the
results were also visualized in tree format (Figure 1), demonstrating
the number of matches across the different phylogenetic clades.

[image:]

Figure 1:
Number of matches by BLAST+ searches across the different phylogenetic kingdoms.

Method

We performed four separate BLAST+ searches in the Archaea,
Bacteria, Plants and Mammals phylogenetic kingdoms Table
1, using the BLASTP sub-program for peptide alignment to the
database. Before performing BLASTP, we formatted the FASTA files
(.faa) that were downloaded from NCBI, and produced files in the
format required (.pal, .pni) for BLASTP database search. Towards
this, we used the makeblastdb command, which takes a FASTA file
as input and outputs a database ready for BLASTP. makeblastdb -in
all_plantBlast.faa -parse_seqids -db type prot. The exact command
parameters used were the ones shown below (with the Plant
database as example, the .pal / .pni suffixes of the database files
are not required in the command): blastp -outfmt 5 -query peptide.
fa -word_size 2 -matrix=PAM30 -db all_plant Blast -out Plant.xml
-evalue 100000000000 -max_target_seqs 500 -qcov_hsp_perc 100.

As seen in the command above, we set the BLASTP results to be
written in the output file (“-out”) in extensible Markup Language
(XML) format. The reason was that his format is standardized,
making it easy to perform further analysis and data mining of
the BLASTP results, using a programming language such as xml.
etree in Python 2.7 shown on the “Code Insert” section below. The
developed code reads the complete XML BLASTP output, in addition
to filtering and counting matches for the database that contain any
of the keywords related to the specific functionality of peptides
(lines 16-20 of the code). Finally, the code prints the output, from
which we counted the number of hits per kingdom presented in
(Figure 1) in the results.

Bioinformatics Code

 from xml.etree import Element Tree

#This program parses XML output from blast

#Input include 1) XML input

#Output 2) Output prints

2a) Blast Matches that are non-nucleotide binding

2b) Blast Matches that are nucleotide binding

 def blast ExactMatch(file Name, hit Seq):

root = ElementTree.parse(fileName).getroot()

rootSub1 = root.getchildren()

iterations = rootSub1[8].getchildren()

blastOutputIterations = iterations[0].getchildren()

IterationHits = blastOutputIterations[4].getchildren()

 Nucleotide Key Words = ['SYNTHET','NUCLEOTID','ABC

TRANSPORTER','PHOSPHO','ADP','AMP',
'ATP','ATP BINDING','ATPDEPENDENT','ATPASE',
'CAMP','CDP','CGMP','CMP','COENZYME
A','CTP','CTP

BINDING','CTP-DEPENDENT','DNA
BINDING','DNA
REPAIR','FAD','FADH 2','GDP',
'GMP','GTP','GTP

 BINDING','GTP-DEPENDENT','
GTPASE','HELICASE','NAD
+','NADH','NADP +','NADPH','NUCLEOTIDE

BINDING','RNA BINDING','TRNA BINDING','UDP','UMP',
'UTP','UTP
BINDING','UTP-DEPENDENT']

TotalFullHits =0

TotalFullHitsNucleotide = 0

 TotalAnyHits = 0

HitIDs = []

 for hitDescr1 in IterationHits:

 TotalAnyHits = TotalAnyHits ++ 1

 hitDescr2 = hitDescr1.getchildren()[5]

 hitDescr3 = hitDescr2.getchildren()[0]

 Hsp_score = hitDescr3.findtext('Hsp_score')

 Hsp_qseq = hitDescr3.findtext('Hsp_qseq')

 Hsp_hseq = hitDescr3.findtext('Hsp_hseq')

 Hsp_midline = hitDescr3.findtext('Hsp_midline')

 Hsp_evalue = hitDescr3.findtext('Hsp_evalue') Hit_num =
hitDescr1.findtext('Hit_num')

Hit_id = hitDescr1.findtext('Hit_id')

 Hit_def = (hitDescr1.findtext('Hit_def')).upper()

NucleotideProtein = “NO ”

if any(x in Hit_def for x in NucleotideKeyWords):

NucleotideProtein = “YES”

if Hsp_hseq==hitSeq and “HYPOTHETICAL PROTEIN”
not in Hit_def:

 print “Hit Number:” + Hit_num

print “Hit ID:” + Hit_id

HitIDs.append(Hit_id)

print “Hit Def:” + Hit_def

print “Nucleotide Binding Protein:” + NucleotideProtein

 print “Hit Accession:”+ hitDescr1.findtext('Hit_
accession')

 print “Hsp Midline:” + Hsp_midline

TotalFullHits = TotalFullHits + 1

 print “Hsp_score:”+Hsp_score

 print “Hsp_qseq:”+Hsp_qseq

 print “Hsp_hseq:”+Hsp_hseq

 print “Hsp_evalue:”+Hsp_evalue

 if NucleotideProtein == “YES”:

 TotalFullHitsNucleotide = TotalFullHitsNucleotide

 print “**”

 print “Total Blast Full Hits:”+str(TotalFullHits)

 print “Blast Full Hits & Nucleotide:”+
str(TotalFullHitsNucleotide)

FullNonNuc = TotalFullHits - TotalFullHitsNucleotide

print “Blast Full Hits & Non-Nucleotide:”+ str(FullNonNuc)

def appendToFile(textFile,strToAppend):

 with open(textFile,'a') as file_object:

 file_object.write(strToAppend)

def deleteLastLine(textFile):

 lines = open(textFile).readlines()

 open(textFile,'w').writelines(lines[:-1])

def seqCount(fastaInput):

 appendToFile(fastaInput,“>”)

with open(fastaInput) as file_object:

 TotalNumberAA = 0

TotalNumberSeq = -1

 for line in file_object:

 lineFirstChar = line[0]

 seqCount = 0

seq = ''

 if line[0] == '>':

try:

 seqHeader = seqHeader2

 except:

 seqHeader = line

 seqHeader2 = ''

 print seqHeader

 while (lineFirstChar!='>'):

seq = seq + line

line = next(file_object)

 lineFirstChar = line[0]

 seqHeader2 = line

 TotalNumberSeq = TotalNumberSeq + 1

seqHeader = seqHeader2

 if seq!='':

print seq

 ProteinLength = len(seq)-1

 TotalNumberAA = TotalNumberAA +
ProteinLength

 print ProteinLength

 print “***”

 print “TotalAAinDB:”+str(TotalNumberAA)

 print “TotalSeqinDB:”+str(TotalNumberSeq)

 deleteLastLine(fastaInput)

def createFastaFromRef(filterFAA,refDBFAA):

header = “>”

with open(refDBFAA) as oldfile, open(filterFAA, 'w') as
newfile:

for line in oldfile:

if any(HitID in line for HitID in HitIDs): #HitID are the
elements from the forloop in this line

 newfile.write(line)

myLine = next(oldfile)

while (myLine[:1]!=“>”):

newfile.write(myLine)

myLine = next(oldfile)

Acknowledgement

We thank all members of the Bioinformatics Core Infrastructures
Lab for their useful feedback and suggestions during the preparation
of the manuscript. This research was supported by the Center for
Translational and Basic Research grant from National Institute on
Minority Health and Health Disparities (G12 MD007599) and Weill
Cornell Medical College-Clinical and Translational Science Center
(2UL1TR000457-06).

References

1.
McGinnis S, Madden TL (2004) Blast: At the core of a powerful and
diverse set of sequence analysis tools. Nucleic acids Research 32(2): 20-25

2. 	Lee M, Wang T, Makhlynets OV, Wu Y, Polizzi NF, et al. (2017) Zinc-
binding structure of a catalytic amyloid from solid-state NMR. Proc Natl
Acad Sci 114(24): 6191-6196.

3. 	Bernstein SL, Dupuis NF, Lazo ND, Wyttenbach T, Condron MM, et
al. (2009) Amyloid-β protein oligomerization and the importance of
tetramers and dodecamers in the aetiology of Alzheimer's disease. Nat
Chem 1(4): 326-331.

4. Lipman DJ, Pearson WR (1958) Rapid and sensitive protein similarity
searches. Science 227(4693): 1435-1441.	

OEBPS/Images/fig1.jpg
Proteanactadia, n=144

Eimicutes, n=3

‘Actinobactera, n=63

Fimicutes, n=25

cidobactatia, =1

Bacteroidetes, n=28

Cyancbactera, n=1

OEBPS/Images/tab1.jpg
Kingdom

Databases Used for BLAST+ Search

Archaea n=990,05¢

archaea” faa.gz, archaeanonredundant_
protein* proteinfaagz

Bacteria n=62,242.940

bacterianonredundant_protein*faagz

Mammals n=4,102,547

vertebrate mammalian*proteinfaagz

Plant n=3,370,267

plantproteinfaa.gz

OEBPS/Images/logo.jpg
CRIMSON PUBLISHERS AT S
“Wings to the Research fechnology

A RecorchAride

OEBPS/Images/img.jpg

OEBPS/Misc/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/Images/cover.jpg
Bioinformatics Programming for
Bioavailability Analysis of Sequence
Patterns in Public Genomic Databases

