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Abstract
Background: Cardiovascular diseases, particularly Coronary Artery Disease (CAD), remain the leading 
cause of death worldwide, imposing significant health and economic burdens. It is crucial to emphasize 
early diagnosis of CAD to prevent complications and improve patient outcomes. This study aims to 
predict the likelihood of CAD recurrence within 6 months post-treatment. 

Methods: The Medical Information Mart for Intensive Care (MIMIC-III) database was used to perform 
a retrospective study. Predictive features include demographic data and laboratory test results. A 
6-month CAD recurrence was set as the study outcome. We used the Machine Learning (ML) Methods 
Of Logistic Regression (LR), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) to develop 
a predictive model for CAD recurrence. The prognostic capacity and clinical utility of these three models 
were compared using the Area Under the Receiver Operating Characteristic Curves (AUROC), precision, 
sensitivity, specificity, f1 measure and Area Under Precision -Recall (AUPR) curve.

Results: Of 7,583 CAD patients in this study population, 2,361 (31%) had CAD recurrence during 
6-month follow-up. Out of 38 features selected and extracted from the MIMIC III database, 15 variables 
were chosen using stepwise regression. The RF model performed best with an AUC of 0.83. The top 6 
significant features in our model were platelet, WBC, RBC, INR, chloride, and creatinine. 

Conclusion: Our study shows that the random forest model outperforms the XGBoost and LR models in 
predicting CAD recurrence within 6 months post-treatment. The study suggests a connection between 
certain lab indices (platelet count, WBC, RBC, INR, chloride, calcium, creatinine) and CAD recurrence, 
bridging knowledge gaps and guiding future research on preventive strategies and treatments for CAD. 
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Introduction
Coronary Artery Disease (CAD) is recognized as the leading cause of death worldwide, 

affecting approximately 1.72% of the global population and resulting in 9 million mortality 
cases per year. In the United States (US) and Europe, CAD prevalence for adults was estimated 
at 7.1% from 2017 to 2020 [1] and 5.11% in 2019, respectively [2]. According to the Global 
Burden Of Disease (GBD) study, the global prevalence of CAD was 154 million in 2016, 
accounting for 32.7% of the global burden of cardiovascular disease and 2.2% of the overall 
global burden of disease (GBD Disease Injury Incidence Prevalence Collaborators). Based 
on data from a national health survey conducted from 2009 to 2012, the American Heart 
Association (AHA) estimated a CAD prevalence of about 15.5 million, with 7.6% of men and 
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5.0% of women in the USA living with CAD during that period. The 
ONACI registry in France reported CAD incidence rates ranging 
from ~1% per year among men aged 45-65 to ~4% in patients aged 
75-84, regardless of sex [3].

The CAD’s etiological risk factors can be broadly classified into 
non-modifiable and modifiable factors. Non-modifiable risk factors 
include gender, genetics, age and family history and modifiable 
risk factors include smoking, obesity, lipid levels, homocystinuria 
and psychosocial stress, hypertension, cigarette smoking, diabetes, 
and physical inactivity. Recently, a faster-paced lifestyle has led 
people to eat more fast foods and unhealthy meals, leading to an 
increased prevalence of CAD [4]. The common pathological process 
that causes CAD is atherosclerosis, an inflammatory disease of the 
arteries associated with lipid deposition and metabolic alterations 
due to multiple risk factors. More than 70% of at-risk individuals 
have multiple risk factors for CAD, and only 2%-7% of the general 
population have no risk factors [5]. Despite the search for novel 
risk factors for CAD, established modified risk factors still play a 
major role [6]. These are associated with an increased risk in major 
prospective epidemiological studies [7].

To measure the world impact of CAD requires estimating 
CAD mortality, prevalence, and disability for men and women, by 
age and different regions in the world. Most of the time, nonfatal 
CAD incidence and prevalence are not always associated with CAD 
mortality. For example, improved acute and chronic CAD treatments 
might minimize CAD mortality and a growing population of chronic 
CAD survivors. Conversely, even if CAD incidence is high, high case 
fatality may lead to relatively low prevalence. Regardless of the 
time trend in age-standardized CAD prevalence, population growth 
and old age may increase the absolute number of people living with 
nonfatal CAD [8]. An increasing number of individuals with non-
fatal CAD live with chronic disabilities and impaired quality of life 
[9]. The increasing incidence of CAD is expected to continue, due not 
only to the increased prevalence of obesity, diabetes, and metabolic 
syndrome but also to population ageing [10]. The past two decades 
have witnessed a steep rise in global population ageing [11]. Indeed, 
the United Nations estimates an increase in the population aged 
over 65 years from one in 11 in 2019 to one in six by 2050 [12]. 
Emerging issues with social relationships, psychological distress, 
and less than six hours of sleep a night also contribute to CAD in 
the current generation [12]. Data from the National Health and 
Nutrition Examination Survey (NHANES) from the period between 
2003 to 2006 stated that an estimated 17.6 million Americans aged 
20 or older had CAD, with an overall prevalence of 7.9% [10].

Machine Learning (ML) is currently one of the hot topics. It 
is a field of computer science that uses computer algorithms to 
identify patterns in huge datasets with multiple variables and can 
predict various outcomes based on given data. Machine learning 
algorithms typically split the data into training and testing sets. The 
model is built using the training data, and predictions and data-
driven decisions are made using the testing data. ML methods have 
recently emerged as highly effective tools in various disciplines, 

including internet search engines, natural language processing, 
finance, healthcare, business, economics, and robotics [13]. The 
significance of utilizing ML models with data from MIMIC to predict 
prognostic outcomes has been studied on various scales. Therefore, 
this study aims to evaluate the risk indicators and develop a 
predictive model that can estimate the likelihood of CAD recurrence 
during a 6-month follow-up period after treatment. The findings 
may contribute to improved treatment planning and preventive 
measures for patients with CAD. 

Literature Review
Coronary Artery Disease (CAD) arises when the myocardium 

receives an insufficient supply of oxygen and blood, stemming 
from the occlusion of coronary arteries. This discrepancy between 
oxygen demand and supply takes shape due to the formation of 
plaques within the luminal space of these arteries, thus obstructing 
the natural blood flow. This condition, once uncommon as a cause 
of death, has evolved into a significant global health concern. 
Throughout the 20th century, it gradually emerged as a primary 
contributor to mortality, peaking in the mid-1960s before a 
subsequent decline. Nevertheless, despite advancements in 
medical understanding and treatment, CAD remains a pervasive 
and leading cause of death worldwide [14]. In recent years, the 
integration of Machine Learning (ML) methods has significantly 
revolutionized the realm of disease detection and diagnosis [15,16]. 
Broadly, ML strategies involve the ‘training’ of algorithms using a 
reference dataset where the disease status (presence or absence) 
is established. Subsequently, these trained algorithms are deployed 
on diverse datasets to predict the disease status for patients 
whose condition is undetermined. As datasets expand in size, 
ML algorithms progressively refine their predictive capabilities, 
bolstering their role as disease predictors. Leveraging ML for 
enhanced disease prediction empowers clinicians with superior 
tools for detection, diagnosis, classification, risk stratification, and 
patient management, potentially reducing the need for extensive 
clinical intervention.

According to Pooja et al. [17], machine learning has demonstrated 
potential in identifying cardiovascular ailments based on patients’ 
clinical data. Among the models, the random forest model exhibited 
remarkable accuracy, registering at 86.60%. Forssen & colleagues 
[18] conducted a study to assess the predictive capabilities of three 
distinct machine learning algorithms; logistic regression, Principal 
Components Analysis (PCA), and random forest, regarding the 
occurrence of CAD. Utilizing data from the Clinical Cohorts in 
Coronary Disease Collaboration (4C), which was compiled from UK 
NHS hospitals, their investigation focused on cases where CAD was 
determined based on the presence of over 50% stenosis in multiple 
coronary arteries. The results indicate that the random forest 
model exhibited superior performance with both a higher AUC 
(0.675) and accuracy (0.713) compared to the logistic regression 
model with PCA-derived features, which achieved an AUC of 0.625 
and an accuracy of 0.686. However, in the case of adjusted models, 
the adjusted logistic regression model outperformed the adjusted 
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random forest model, boasting an AUC of 0.767 and an accuracy of 
0.759, while the adjusted random forest achieved an AUC of 0.711 
and an accuracy of 0.732.

In a separate study by Motarwar & colleagues [19], an 
algorithmic framework was devised to predict CAD risk, where 
the random forest model again emerged as the most precise with 
a notable accuracy of 95.08%. Another study [20] investigated 
the prediction of CAD through the utilization of metabolites and 
combined this with the efficacy of traditional risk factors such as 
lipid levels, blood pressure, lifestyle parameters, family history, sex, 
and age. Employing logistic regression with LASSO, they endeavored 
to identify relevant metabolites linked to CAD and subsequently 
compared the predictive prowess of these metabolites with those 
not correlated to risk factors. Surprisingly, their findings revealed 
that leveraging metabolites independent of conventional risk factors 
did not yield improvements in risk prediction based on traditional 
factors, specifically within cohorts of individuals devoid of CAD. 
Sabarish & Parvati [21] employed multiple algorithms, including 
Decision Tree (DT), Naive Bayes (NB), k-Nearest Neighbors (KNN), 
and RF, revealing that the KNN algorithm attained the highest 
accuracy rate at 90.7%. Furthermore, leveraging a CNN model, the 
detection of images related to Chinese herbal medication achieved 
a commendable 71% overall accuracy. Noteworthy, an impressive 
success rate of 96.7% was observed when employing ANN for 
the detection of lung cancer [22]. Notably, a research conducted 
by Pooja et al. [17] suggested the utilization of Natural Language 
Processing (NLP) to train and evaluate a depression prediction 
model [23], on the other hand, introduced a neural network for 
diabetes prediction, achieving an impressive prediction accuracy 
of 87.3%. In a comparative context, this innovative approach 
showcased substantial enhancements to the neural network’s 
performance. In training, the performance was elevated by 91%, 
while testing witnessed a commendable 86% boost compared to 
baseline performances of 89% and 81%, respectively.

Materials and Methods
Data source and study population

Data from the Medical Information Mart for Intensive Care 
(MIMIC-III) v1.4 database for ages 15 and above were collected 
and included in the study. MIMIC-III is an openly available database 
containing de-identified data on 46,520 patients and 58,976 
admissions of the Beth Israel Deaconess Medical Center, Boston, 
USA, between 1 June 2001 and 31 October 2012. These data include 
comprehensive descriptions, such as demographics, admission 
notes, International Classification of Diseases-9th revision (ICD-9) 
diagnoses, laboratory tests, medications, procedures, fluid balance, 
discharge summaries, vital sign measurements undertaken at the 
bedside, caregiver’s notes, radiology reports and survival data 
[24]. The proportion of missing values in all the selected features 
was less than 10% therefore we removed all the missing values. 
A total of 7,583 patients diagnosed of CAD were enrolled in this 

study, 5,222 patients had no recurrence of CAD and 2361 patients 
had recurrence of CAD. The subjects were randomly sampled 
into a training and a testing set at a ratio of 80: 20. The training 
set was used to develop the model and the testing set was used 
to test the performance of the model after learning. The models 
were developed using the training set by using Python version 3.1 
programming language (http://www.python.org) and the data 
preprocessing was done in R statistical software version 4.3.0. 

Class imbalance

Out of total CAD patients enrolled in the study, 2,631 patients 
experienced a recurrence within a 6 month follow-up window. If 
we were to allocate patients randomly into either the training 
or testing set without considering this inherent imbalance, our 
algorithm could inadvertently learn to predominantly predict 
CAD non-recurrence (the larger class), undermining the central 
objective of our study. To effectively address this challenge, our 
study employs the Synthetic Minority Over-sampling Technique 
(SMOTE) procedure, as introduced by Chawla et al. [25]. This 
sophisticated method deviates from the traditional approach 
of merely duplicating existing instances. Instead, it ingeniously 
generates synthetic examples that capture the underlying patterns 
of the minority class. SMOTE helps to rectify the class imbalance 
issue, enabling our algorithm to more accurately learn and predict 
instances of CAD recurrence. SMOTE’s ability to strategically expand 
the minority class enhances the robustness of our predictive model. 
This not only enables the algorithm to better capture the nuances of 
CAD recurrence but also aligns with the overarching research goal 
of our study.

Study outcome (cases and controls)

In the context of the study “Evaluating the likelihood of 
recurrence of CAD within 6 months post-treatment,” the cases and 
controls are defined as follows: The cases (recurring CAD) refer to 
individuals who experienced a recurrence of CAD within 6 months 
after treatment. These patients had previously undergone CAD 
treatment but subsequently developed the disease again during the 
6-month follow-up period. The cases are the group of interest for 
assessing the likelihood of CAD recurrence. In contrast, the controls 
(non-recurring CAD) refer to individuals who underwent the same 
CAD treatment but did not experience a recurrence within 6 months 
post-treatment. These individuals achieved disease stability or 
remission after the initial treatment. The controls were selected 
to represent patients with a similar baseline CAD diagnosis and 
treatment but without recurrent disease within 6 months. Including 
controls in the study aims to establish a comparison group that 
can help evaluate the association between the features and CAD 
recurrence. By comparing the cases and controls within the same 
population, we can identify any differences or patterns that may 
indicate the likelihood of CAD recurrence. For this purpose, cases 
and controls were analyzed by randomly sampling patients visit, as 
shown in Figure 1.



4

Trends Telemed E-Health       Copyright © Musa Touray

TTEH.000600. 4(5).2024

Figure 1: Timeline of study period schema.

Feature selection

The selection of predictors was a collaborative process, 
drawing on insights from a comprehensive literature review and a 
consensus meeting with a Cardiovascular Disease (CVD) specialist 
physician. From this groundwork, relevant features were extracted 
from both demographic and laboratory data sources. To discern the 
most influential variables among the extracted features, a stepwise 
logistic regression model was employed. Stepwise regression 
represents a dynamic statistical technique that automates the 
predictor selection process. Within this approach, distinct strategies 
are harnessed, namely forward selection, backward elimination, 
or a combination of the two [26]. In our study, we utilized both 
forward selection and backward elimination, employing the Akaike 
Information Criterion (AIC) as a pivotal feature selection metric. 
By harnessing this stepwise methodology, our study aimed to 
discern a subset of predictors that significantly contribute to the 
predictive model’s performance. This approach not only leverages 
the physician’s expertise but also employs a systematic and 
statistically grounded technique to refine our model’s feature set. 
Ultimately, the selected features, informed by both clinical insights 
and rigorous statistical criteria, collectively enhance the model’s 
ability to accurately predict cardiovascular disease recurrence.

Machine learning models

Within the scope of this investigation, three distinct machine 
learning models have been harnessed to forecast the recurrence of 
CAD within a critical 6-month window following treatment. These 
models encompass Logistic Regression (LR), Extreme Gradient 
Boosting (XGBoost), and Random Forest (RF).

Logistic regression (LR): Logistic Regression (LR) is a 
foundational approach in predictive analytics that examines the 
relationship between predictor variables and the likelihood of 
a specific event occurring. Recently, LR analysis has become an 
increasingly used statistical tool in healthcare research, especially 
over the last two decades [27], although its origin can be dated 
way back to the earlier nineteenth century. It is usually considered 
the statistical analysis of preference when a binary (dichotomous) 
outcome is to be predicted from one or more independent 
variables. The LR is used in scenarios where we want to predict a 

binary outcome class (categorical) example if a specific group have 
a disease condition or not or where the decision is true or false. 

Extreme Gradient Boosting (XGBoost) model 

Extreme Gradient Boosting (XGBoost) represents an advanced 
ensemble learning technique known for its robustness and 
predictive accuracy. XGBoost constructs a complex predictive 
model by iteratively combining the predictive capabilities of 
multiple weak learners. XGBoost is an algorithm based on the 
gradient boosting decision tree, which can efficiently construct 
boosted trees and run in parallel. The boosted trees in XGBoost 
are divided into regression trees and classification trees. The core 
of the algorithm is to optimize the value of the objective function 
[28]. XGBoost has the advantage of scalability in all scenarios and is 
fast [28]. The model works by combining a set of weaker machine-
learning algorithms to obtain an improved machine-learning 
algorithm [29]. It can identify non-linear patterns in the data. It 
can handle both numerical and categorical data [30], is relatively 
robust to outliers, provides useful estimates of variable importance 
and has an efficient method for estimating missing data [31]. 

Random Forest (RF): Random Forest is a common machine 
learning algorithm used for several types of classification, 
regression and other problems and it can model complex 
interactions among exploratory variables [25]. It is an ensemble 
of tree-structured classifiers [31] and leverages the collective 
use of multiple decision trees. By aggregating the predictions of 
individual trees, RF enhances the model’s stability and predictive 
power. Every tree in the forest gives a unit vote, assigning each 
input to the most probable class label. The hyperparameters with 
the training set were estimated using grid search and tenfold cross-
validation to find the best-optimized hyperparameters. The best 
parameter combination in the model was selected which led to the 
high performance of the models. 

Model optimization

Model optimization is a crucial phase in machine learning 
where various aspects of a model are fine-tuned to enhance 
its performance and generalizability. This involves adjusting 
hyperparameters, selecting relevant features, preprocessing data, 
employing cross-validation, leveraging ensemble methods, applying 
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regularization, selecting appropriate algorithms, and using relevant 
evaluation metrics. The goal is to create a well-performing model 
that strikes a balance between capturing patterns and avoiding 
overfitting, resulting in accurate predictions on both training and 
unseen data. To ensure robust generalization and mitigate the 
potential for overfitting, we employed a hybrid approach that 
combines both holdout and cross-validation methodologies. Our 
dataset was partitioned into distinct subsets: 80% for training 
and 20% for independent testing. Within the training subset, we 
conducted a comprehensive 10-fold cross-validation procedure. 
The performance evaluation of our models was then conducted 
using the separate test subset. Notably, a grid search technique was 
employed during the parameter tuning process to optimize model 
performance.

Evaluation metrics

The models’ performances were assessed using several 
evaluation metrics, such as the Area Under the Curve (AUC), 
accuracy, recall, precision, specificity, F1 measure, and precision-
recall curve. These evaluation metrics collectively provide insights 
into different aspects of a model’s performance. 

A. The metrics were calculated based on the following parameters:

B. True Positive (TP): Patients who are correctly labelled by the 
classifier as CAD recurrence.

C. True Negative (TN): Patients who are correctly labelled by the 
classifier as non-CAD recurrence.

D. False Negative (FN): Patients that are incorrectly labelled by 
the classifier as CAD recurrence and

E. False Positive (FP): Patients that are incorrectly labelled by the 
classifier as non-CAD recurrence.

Below, a detailed explanation of the metrics and formula.

Receiver Operating Characteristic (ROC): The ROC analysis 
serves as a pivotal tool in assessing the discriminative prowess of 
a classification model. This technique systematically evaluates the 
model’s ability to distinguish between different classes or outcomes. 
The ROC curve itself represents a graphical representation of the 
model’s performance, with values ranging from 0.5 to 1.0. Notably, 
a higher ROC score corresponds to superior model performance 
in distinguishing between classes. This numeric representation 
quantifies the model’s efficiency in correctly classifying instances 
while navigating the inherent trade-off between sensitivity and 
specificity.

Precision-Recall (PR) Curve: The Precision-Recall (PR) curve 
is constructed based on precision and recall values. Typically, recall 
is plotted along the horizontal axis, while precision is depicted along 
the vertical axis. The PR curve, alternatively referred to as average 
precision, quantifies performance by calculating the area under 
the PR curve. Especially pertinent when dealing with imbalanced 
datasets, the PR curve provides a valuable assessment of model 
effectiveness. Its ability to capture nuanced class distribution 
dynamics makes it particularly useful for gauging performance in 
situations where one class vastly outweighs the other.

Accuracy: Accuracy is a pivotal metric in the realm of 
classification analysis, quantifying the model’s ability to correctly 
predict instances across all classes. It represents the ratio of 
correctly predicted instances to the total number of instances in 
the dataset [32-34].

Accuracy= (TP+ TN)/(TP+FP+TN+FN)

F1 score: The F1 score, often recognized as the F1 measure 
or F1 statistic, emerges as a pivotal metric in the evaluation of 
classification models. Derived from the harmonic mean of precision 
and recall, the F1 score strikes a balance between these two vital 
performance indicators. This balance is particularly valuable in 
situations where class distribution is imbalanced, ensuring that 
both false positives and false negatives are considered. Essentially, 
the F1 score encapsulates the model’s ability to harmonize accurate 
positive predictions (precision) with capturing all relevant positive 
instances (recall). This attribute makes the F1 score an essential tool 
for assessing a model’s efficacy across various contexts. A high F1 
score indicates that the model is achieving an optimal equilibrium 
between precision and recall, signifying a robust ability to both 
identify relevant instances and minimize erroneous classifications. 
Its utility extends to scenarios where striking a balance between 
false positives and false negatives is of paramount importance, 
contributing to informed decision-making and effective model 
selection [33].

F-score=(2*Precision*Recall)/(Precision+Recall)

Sensitivity (recall or true positive rate): Sensitivity, often 
referred to as the true positive rate or recall, is a fundamental metric 
in the realm of classification analysis. It measures the model’s 
capability to correctly identify positive instances from the total 
instances that are actually positive. In essence, sensitivity quantifies 
how effectively the model “senses” or “recalls” the presence of the 
target class. A high sensitivity score indicates that the model is 
adept at identifying a significant proportion of the actual positive 
instances, minimizing the risk of false negatives. This is particularly 
crucial in scenarios where missing positive instances can have 
serious implications, such as in medical diagnoses [32-34].

Recall=TP/(TP+FN)

Precision (Positive Predictive Value): Precision, often 
termed positive predictive value, is a pivotal metric in the realm 
of classification analysis. It gauges the model’s precision in 
correctly identifying positive instances from the total instances 
that it predicts as positive. Essentially, precision quantifies how 
well the model “filters” out instances that are truly positive from 
those that might be falsely classified. A high precision score 
signifies that the model is skillful at correctly labeling instances as 
positive, minimizing the risk of false positives. This is particularly 
significant in scenarios where false positives can lead to undesired 
consequences or unnecessary interventions. Precision serves as a 
critical gauge of a model’s performance, especially when accuracy 
in labeling positive instances is crucial. In contexts where ensuring 
the authenticity of positive predictions is paramount, a high 
precision value reflects that the model is making predictions with a 
high level of certainty and accuracy, contributing to sound decision-
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making and trustworthy outcomes.

Precision=TP/(TP+FP)

Specificity (true negative rate): Specificity, often termed 
the true negative rate, is a fundamental metric in the realm of 
classification analysis. It evaluates the model’s ability to accurately 
identify negative instances from the total instances that are 
actually negative. In essence, specificity quantifies the model’s 
“specific” ability to distinguish the absence of the target class. A 
high specificity score indicates that the model excels in correctly 
classifying negative instances, reducing the likelihood of false 
positives. This is particularly vital in scenarios where avoiding false 
alarms is crucial, such as in safety-critical applications [32-34].

Specificity=TN/(TN+FP)

Statistical analysis

Patient demographic and clinical attributes concerning 
recurrence and non-recurrence of CAD underwent comparative 
analysis. The student t-test was employed for normally distributed 
continuous variables, while the Wilcoxon rank-sum test was applied 
for non-normally distributed continuous variables. In instances 
of categorical variables, the Chi-square test or Fisher’s exact test 
was utilized for inter-group differentiation. To succinctly present 
the data, normally distributed variables were expressed as mean 
and Standard Deviation (SD), non-normally distributed variables 

as median and interquartile range, and categorical variables as 
absolute values and percentages. Notably, all statistical analyses 
adhered to the established threshold of significance, with a p-value 
less than 0.05 deemed statistically significant. The entirety of data 
preprocessing and subsequent statistical evaluations was executed 
using R software version 4.3.0 (as of April 21, 2023), while the 
development of machine learning models was conducted employing 
Python version 3.1. This comprehensive approach facilitated robust 
analysis and model generation within a meticulously curated 
framework. 

Results
Subject’s characteristics 

A total of 7,583 patients with CAD in the MIIMIC III 1.4 dataset 
were enrolled in this study. Out of the total study population, 
2,361 (31%) had CAD recurrence. The median age for recurring 
CAD patients was 69 (range 31-88) years and majority were male 
70% (n=1632). Patients with recurring CAD exhibit significant 
alterations in various blood parameters. Some of these changes 
include a decreased amount of white blood cells (median 9.87, IQR 
7.8 - 12.2), hematocrit (median 25.4, IQR 0-32), chloride (median 
103.53, IQR 100.8 - 105.87), and low-density lipoprotein (mean 
8.36, SD± 0.36). Conversely, they show an increased amount of total 
calcium (median 8.47, IQR 8.09-8.84) and creatinine (median 1.1, 
IQR 0.85-1.64) (Table 1).

Table 1: Baseline characteristics of patients with non-recurrence and recurrence of CAD.

WBC: White Blood Cell; RBC: Red Blood Cell; INR: International Normalized Ratio; CK: Creatinine Kinase; HbA1c: 
hemoglobin A1C; LDL: Low-Density Lipoprotein; mg/dl, milligrams per deciliter; IU/L; International units per litre; 
cm: Centimetre; yrs: Years; S.D: Standard Deviation; K/uL: Thousand per microliter; m/uL: Million per microliter; 
%: percentage; mEq/L: Milli equivalents per litre. Continuous variables that are normally distributed are recorded as 
mean (S.D), non-normally distributed continuous variables as median (interquartile range) and categorical variables 
as absolute numbers and percentages, n(%). The Chi-square test was used for the comparison of categorical variables 
and the two-sample t-test for continuous variables. All p values were two-sided. Statistical significance was defined as 
p<0.05.

Variable Non-Recurrence CAD(n=5222) Recurrence CAD(n=2361) P-Value

Age yrs.(range) 70(18-88) 69(31-88) 0.7364

Gender 0.2117

Male (%) 3582(69) 1632(70)

Female (%) 1640(31) 729(30)

Platelet (K/uL) 202.78(160.42-255.67) 205.94(160.25-260.12) 0.2664

WBC (K/uL) 10.32(8.43-12.69) 9.87(7.8-12.2) <0.0001

Hematocrit (%) 28(0-32.8) 25.4(0-32) <0.0001

Total calcium (mg/dL) 8.44(8.02-8.81) 8.47(8.09-8.84) 0.0014

Chloride (mEq/L) 104.12(101.78-106.25) 103.53(100.8-105.87) <0.0001

LDL (mg/dL) 10.53(±0.27) 8.36(±0.36) <0.0001

CK (IU/L) 65.17(0-260.75) 63.6(0-192) 0.5732

Creatinine (mg/dL) 1(0.8-1.34) 1.1(0.85-1.64) <0.0001

Uric acid (mg/dL) 0.31(±0.02) 0.31(±0.03) 0.8964

INR 1.25(1.13-1.44) 1.26(1.14-1.5) 0.0021

HbA1c (%) 1.75(±0.04) 1.34(±0.06) <0.0001

RBC (m/uL) 3.52(3.24-3.9) 3.48(3.21-3.86) 0.0005

Model’s performance

The AUCs discriminatory abilities of all three models for the 

prediction of CAD recurrence within 6 months is shown in Figure 
2 (A) AUROC and (B) AUPR. The performance of each model was 
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generated from the testing set. The XGBoost, RF and LR had AUCs 
of 0.81, 0.83 and 0.63 respectively. The AUC of XGBoost model was 
0.74, recall 0.76, specificity 0.76 and precision 0.75. The AUC of RF 

model was 0.76, recall 0.80, specificity 0.73, precision 0.78 and AUC 
of LR is 0.60, recall 0.61, specificity 0.58 and precision 0.60 (Table 
2).

Figure 2: Receiver operator characteristic curves and precision-recall curve. (A) Receiver operating characteristic 
curve. (B) Precision-recall curve. XGBoost extreme gradient boosting. ROC operating characteristic curve. AUC area 

under the curve. AUPRC area under the precision-recall curve.

Table 2: Model performance in the testing dataset.

CI confidence interval; AUROC area under curve under the receiver operating characteristic curve; XG Boost extreme 
gradient boosting, LR logistic regression, RF random forest.

Model Accuracy 
(95%CI)

Precision 
(95%CI)

F1score 
(95%CI)

AUROC 
(95%CI) Recall (95%CI) Specificity 

(95%CI) AUPRC

XG Boost 0.74(0.65–0.85) 0.75(0.67–0.82) 0.73(0.64–0.81) 0.81(0.65–0.81) 0.76(0.65–0.81) 0.72(0.75–0.79) 0.84

RF 0.76(0.74–0.78) 0.78(0.71–0.81) 0.76(0.69–0.80) 0.83(0.69–0.84) 0.80(0.69–0.81) 0.73(0.71–0.79) 0.85

LR 0.60(0.58–0.62) 0.60(0.58–0.62) 0.60(0.58–0.62) 0.63(0.56–0.65) 0.61(0.58–0.62) 0.58(0.60–0.65) 0.61

Feature importance

The feature importance was assessed using the XGBoost model 
and RF model. In the XGBoost model, the top six (6) important 
variables in predicting the recurrence of CAD were platelet, WBC, 

RBC, INR, chloride, and creatinine. In the RF model, the top six 
(6) are creatinine, platelet, WBC, chloride, RBC, and total calcium 
(Figure 3). The top 6 features in XGBoost model were similar to 
those in RF model.

Figure 3: A. Features importance in a classifier based on XGBoost. B. Features importance in a classifier based 
on the Random Forest model. WBC white blood cell, RBC red blood cell, INR international normalized ratio, CK 

creatinine kinase, HbA1c hemoglobin A1C, LDL low-density lipoprotein.
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Multivariate logistic regression analysis of factors for 
CAD reoccurrence

Multivariate logistic regression analysis identified that gender, 
platelet count, total calcium, creatinine, and INR were associated 
with a 1-fold increase in CAD recurrence when it increased by 
one unit (OR:1.082, OR: 1.100, OR: 1.045, OR:1.116, OR: 1.096) 
respectively (Table 3). 

Table 3: Multivariate analysis of factors for CAD recurrence.

WBC: White Blood Cell, RBC: Red Blood Cell, INR: 
International Normalized Ratio, CK: Creatinine Kinase, 
HbA1c: Hemoglobin A1C, LDL: Low-Density Lipoprotein. 
mg/dl milligrams per deciliter, IU/L: International units 
per litre, cm: Centimeter (cm), yrs: Years, S.D: Standard 
Deviation, K/uL: Thousand per microliter, m/uL million 
per microliter, % percentage, mEq/L milliequivalents per 
liter. CI, confidence interval.

Variable Odd Ratio (95% CI) P-value

Age, yr 0.998 (0.994-1.002) 0.33

Gender 1.082 (0.970-1.208) 0.156

Platelet (K/uL) 1.1 (1.000-1.001) 0.129

WBC (K/uL) 0.987 (0.976-0.998) 0.026

Hematocrit (%) 0.992 (0.988-0.995) <0.001

Total calcium 
(mg/dL) 1.045 (1.020-1.070) <0.001

Chloride 
(mEq/L) 0.988 (0.980-0.995) 0.001

LDL (mg/dL) 0.997 (0.994-0.999) 0.018

CK (IU/L) 1 (1.000-0.999) 0.022

Creatinine (mg/
dL) 1.116 (1.071-1.163) <0.001

Uric acid (mg/
dL) 0.983 (0.953-1.014) 0.282

INR 1.096 (1.019-1.180) 0.014

HbA1c (%) 0.964 (0.946-0.983) <0.001

RBC (m/uL) 0.881 (0.801-0.968) 0.009

Discussion
Main findings

To the best of our knowledge, this study represents the first 
investigation into the recurrence of CAD within a 6-month post-
treatment period. The study’s findings highlight the significant 
clinical role of Machine Learning (ML) in evaluating the prognostic 
risk of CAD recurrence. The primary focus of this study is on 
assessing the predictive power of laboratory measurements 
and patients demographic information in CAD recurrence after 
treatment using machine learning algorithms. This approach 
aims to identify potential biomarkers or indicators of CAD risk. 
By examining lab data, the study explores the association between 
specific lab measurements and the occurrence or recurrence of 
CAD, providing insights into the independent predictive role of 
these lab variables, regardless of other known risk factors. The 
Random Forest (RF) algorithm showcased exceptional predictive 
performance in our study, yielding an impressive Area Under the 

Curve (AUC) value of 0.83 and accuracy of 0.76. These findings 
surpassed the results obtained from the integrated tree-based 
XGBoost algorithm and logistic regression. A study conducted by 
Aravind et al. [35] employed clinical data to construct predictive 
models using Machine Learning (ML) algorithms, aiming to aid 
clinicians in the timely detection of Coronary Artery Disease (CAD). 
Their RF model achieved a remarkable accuracy of 0.87. Similarly, 
another investigation, led by Jinwan et al. [36] aimed to develop 
prediction models using ML algorithms to anticipate the risk of 
major adverse cardiovascular events within 6 months post-coronary 
revascularization. Their RF model, following oversampling with 
SMOTE, demonstrated a performance with an accuracy of 0.75.

 In the absence of traditional CAD risk factors such as alcohol 
consumption, smoking, diabetes, obesity, hypertension, and 
history of heart disease, our model successfully predicted CAD 
recurrence within the 6-month post-treatment period. The 
Random Forest model can serve as a decision support tool for 
clinicians, complementing their expertise and facilitating more 
informed decisions regarding treatment plans, interventions, and 
lifestyle modifications for patients with suspected or diagnosed 
CAD. Furthermore, the model’s performance may contribute to 
the development or refinement of clinical guidelines for CAD 
management, promoting standardized and evidence-based 
approaches in clinical practice.

In terms of age distribution, our study observed similarities 
between CAD recurrent and non-recurrent patients. However, 
CAD recurrence exponentially increased with advancing age, 
consistent with previous studies [37,38]. Our findings also align 
with epidemiological studies indicating a higher incidence of CAD 
in males compared to females [39]. However, a study by Miller et 
al. [40] reported no gender differences in CAD patients and those 
with CAD recurrence. Despite advances in health technology for 
diagnosing and treating cardiovascular diseases, CAD remains the 
leading cause of morbidity and mortality for both men and women 
worldwide [41]. A clinical study conducted in the Netherlands 
over a 16-year period, evaluating 1,894 patients with coronary 
angiography, found no gender difference in the extent of coronary 
lesions observed [42]. Efforts to reduce these rates should 
focus on improving the implementation of guideline-directed 
recommendations after CAD diagnosis, including treatment 
protocols. Although medications such as statins, aspirins, ACE 
inhibitors, and antiplatelet and anticoagulant combination therapy 
reduce the risk of recurrent events [13], the adherence to these 
treatment regimens remains insufficient, and many high-risk 
patients do not continue with guideline-recommended treatments 
[43].

In the multivariate analysis, we identified gender, platelet 
count, total calcium, creatinine, and INR as independent predictors 
closely associated with CAD recurrence. These features indicate 
an increased risk of CAD recurrence after treatment. Feature 
importance was assessed using the f-score from both the XGBoost 
and Random Forest models. The top six most important features 
identified were platelet count, White Blood Cell Count (WBC), 
Red Blood Cell Count (RBC), INR, chloride, and creatinine. Feature 
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importance was assessed using an f-score from the XGBoost model 
and random forest model. This metric measures the number of 
times a feature is used to split the data across all trees. From the 
XGBoost model, and RF model, the top 6 most important features 
are platelet, WBC, RBC, INR, chloride, and creatinine.

Clinical implications

Machine learning models offer a concrete and empirical 
screening method to estimate a patient’s potential to develop 
specific diseases like CAD. While clinicians traditionally rely on 
personal judgment, which can be subjective and grounded in their 
clinical expertise, machine learning provides an objective approach 
to CAD diagnosis. These models can seamlessly integrate into 
everyday clinical practice without requiring expensive medical 
equipment. Consequently, clinicians can efficiently assess a patient’s 
CAD risk promptly, whether in real-time or over a duration, without 
adding to their workload. This significance is evident not only in the 
rapidly evolving healthcare systems of developed countries but also 
in the resource-constrained environments of developing nations.

By assessing specific lab biomarkers and integrating them 
with Machine Learning (ML), healthcare providers can gain a 
deeper understanding of disease progression. In this present 
study, our ML models, which are developed based on the disease 
biomarkers, have proven to provide valuable insights into the 
treatment response of CAD and its probable recurrence. The 
use of laboratory data allows for objective and quantitative 
measurements, providing a standardized and reliable assessment 
of patients’ conditions. This approach enhances the accuracy and 
precision of monitoring, enabling early detection of recurrent CAD 
and prompt intervention. When these models are integrated into 
clinical practice, healthcare professionals could optimize treatment 
strategies, tailor interventions based on individual patient profiles, 
and improve overall patient outcomes. Therefore, the inclusion of 
laboratory data and ML in this study enhances its clinical relevance 
and usefulness in informing patient care decisions. The outcome 
of our study underscore the promise of future investigations 
employing these algorithms to further refine CAD diagnosis 
accuracy. The pursuit of heightened precision in disease prediction 
and prevention demands the integration of sophisticated tools as 
we confront the challenges posed by CAD.

Limitations

The study had limitations, including its retrospective nature 
and reliance on existing medical records, which could lead to 
incomplete or missing data. Although efforts were made to 
clean the data for the present study, inaccurate or incomplete 
data could affect the reliability of the findings. Additionally, the 
6-month follow-up duration may not capture longer-term CAD 
recurrence patterns, warranting longer follow-up durations for a 
more comprehensive understanding of disease progression. While 
the study may establish associations between laboratory indices 
and CAD recurrence, it cannot establish causality. Other factors 
not considered in the study may contribute to CAD recurrence. 
Considering CAD’s complexity, incorporating additional risk factors 
into predictive models can enhance accuracy. Addressing these 

limitations in future research can enhance understanding of CAD 
recurrence and the utility of laboratory indices in predicting and 
monitoring disease progression.

Future work

Expanding upon the insights garnered from our current 
investigation, promising avenues for future research emerge, 
poised to further enrich our comprehension of CAD. These potential 
future studies not only broaden the scope of our findings but also 
carry the potential to address previously unexplored facets and 
amplify the practical implications of our research. In forthcoming 
endeavors, we aspire to delve into the realm of Clinical Scoring 
Systems Comparison. This vital endeavor entails conducting a 
comprehensive assessment that scrutinizes the performance of 
machine learning algorithms against established clinical scoring 
systems, such as the widely recognized Framingham Risk Score. 
This deliberate evaluation seeks to unveil whether machine 
learning possesses the potential to surpass conventional scoring 
systems in terms of predictive accuracy for CAD recurrence. 
Additionally, we aim to undertake Extended Follow-Up Analysis. 
This trajectory of investigation extends beyond the immediate 
6-month post-treatment period, immersing itself in prolonged 
observation windows spanning 1 to 2 years. This exploration 
seeks to illuminate the sustained predictive prowess of machine 
learning algorithms across these extended durations. These longer 
timeframes could potentially unravel the temporal dynamics 
governing CAD recurrence risk. It involves evaluating whether 
the predictive insights gleaned within the initial 6 months remain 
steadfast over these extended periods, thereby yielding invaluable 
insights into the enduring effectiveness of predictive models.

Conclusion
The RF model outperforms the XGBoost and LR models in 

predicting CAD recurrence within 6 months after treatment. The 
study indicates a potential association between laboratory indices 
(platelet, WBC, RBC, INR, chloride, total calcium, and creatinine) 
and CAD recurrence. These findings contribute to filling gaps in 
knowledge, inspiring further research, and providing guidance 
for future investigations into preventive strategies and treatment 
approaches regarding CAD. 
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