

An Alternate Form of the Integrated First-Order Rate Equation

Frank E Stary*

Department of Chemistry, USA

Abstract

Derivation of a first-order equation suitable for use in beginning energy science and chemistry courses is

 $A = A_o / 2^{t/t_{1/2}}$

Where,

Ao is the original amount of the sample

A is the amount

T is time t and

t1/2 is the half-life

Ao is larger than A

ISSN: 2637-8078

*Corresponding author: Frank E Stary, Department of Chemistry, USA

Submission:

☐ June 11, 2019

Published:
☐ June 25, 2019

Volume 3 - Issue 3

How to cite this article: Frank E Stary. An Alternate Form of the Integrated First-Order Rate Equation. Significances Bioeng Biosci. 3(3). SBB.000564.2019.

DOI: 10.31031/SBB.2019.03.000564

Copyright@ Frank E Stary, This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Derivation of the Alternate Form

Radioactive processes and many chemical processes follow first order kinetics. The usual equations

found in general chemistry textbooks are:

- a. $\ln Ao/A = kt$, Where, A_o is the original amount of the sample, A is the amount at time t and k is the rate constant.
 - b. Changing the rate constant to half-life, $ln2 = kt_{...}$, where $t_{1/2}$ is the half-life.
- c. Solving equation 2 for k and substituting into equation 1 the result is $\ln Ao/A = (\ln 2)t/t_{1/2}$.
 - d. Rearranging equation 3 gives $A = A_0 / e^{(\ln 2)t/t_{1/2}}$ as indicated in [1].
 - e. Since $e^{\ln 2} = 2$, substitution into equation 4 yields $A = A_o / 2^{i l_{1/2}}$ the Alternate Form of the

Integrated first-order rate equation

Our students have found equation 5 to be relatively easier to use than equations 1 and 2. In equation 5, by dividing the time by the half-life, they get a number. On their calculators, they enter the number 2, y^x , the number and press=The result is divided into A_o , giving the value for A. For radioactive processes, the values of Ao and A may be in mass, such as grams, or activity in Becquerel's (counts/second). For chemical processes, units for A_o and A may be written as rates, such as molarity/second.

References

 Kenneth AC (1991) Chemical kinetics, the study of reaction rates in solution. VCH Publishers, USA, p. 496

For possible submissions Click below:

Submit Article