

Study of Phase Formation In The Cute-As₂te₃System

Aliyev II^{1*}, Ismailova SH¹, Kuluzade ES¹ and Gashimov KM²

¹Institute of Catalysis and Inorganic Chemistry, Azerbaijan

²Azerbaijan State Economic University, Azerbaijan

Abstract

By the methods of DTA, XRD, MSA, as well as by measuring the microhardness and determining the density of the alloys, the CuTe-As $_2$ Te $_3$ system was studied and a phase diagram was constructed. The system state diagram is of the eutectic type and is characterized by one chemical compound of Cu $_3$ As $_4$ Te $_9$ composition. Compounds Cu $_3$ As $_4$ Te $_9$ melts incongruently at 320 °C. Solid solutions based on As $_2$ Te $_3$ reaches 8mol. % and based on CuTe solid solutions are practically not installed. Cu $_3$ As $_4$ Te $_9$ and As $_2$ Te $_3$ form a eutectic composition of 45mol. % As $_2$ Te $_3$ and temperature of 265 °C.

Keywords: Eutectic; Incongruent; Microhardness; Density; Syngony

Introduction

It is known that compounds and solid solutions based on arsenic chalcogenides occupy an important place among the materials used in optoelectronics [1-3]. Copper chalcogenides and alloys based on them as thermionic and superionic materials are widely used in radio and electronic engineering [4,5]. Some quasi-binary sections with the participation of arsenic chalcogenides and the Cu-As-Se (Te) ternary system have been investigated in the literature [6,7]. However, there is no data in the literature on interactions in the CuTe-As₂Te₃ system. The aim of this work is to synthesize and study the interaction in the CuTe-As₂Te₃ system, as well as to search for new semiconducting phases and solid solutions. The CuTe compound melts incongruently at 367 °C and crystallizes in a rhombic syngony with unit cell parameters: a= 3.16; b= 4.07; c= 6.92 Å, sp. gr. Pmmm-D¹³_{2h} [8]. According to [9], the CuTe compound melts incongruently at 400 °C. The As₂Te₃ compound melts with an open maximum at 381 °C and crystallizes in monoclinic syngony with lattice parameters: a= 14.339; b= 4.006; c= 9.873Å, β = 95°, sp.gr. C₂/m, the density is ρ = 6.25g/cm³ [10].

Experimental Part

The synthesis of the initial components of the system, which was carried out from the elements Cu-99.97; tellurium Te-99.998, and arsenic 99.99 taken in stoichiometric proportions. Triple alloys of the CuTe-As $_2$ Te $_3$ system were synthesized in a single-temperature furnace by the ampoule method from the CuTe and As $_2$ Te $_3$ components. Taking into account the peritectic nature of the formation of the CuTe compound, annealing was performed for 350h at a temperature of $\sim 20~{\rm ^{\circ}C}$ below the final crystallization temperature.

The study of the ${\rm CuTe\text{-}As}_2{\rm Te}_3$ ternary system was carried out by methods of physicochemical analysis: Differential Thermal (DTA), X-ray Phase (XRD), Microstructural (MSA), as well as density determination and microhardness measurement.

Result and Discussion

The obtained alloys of the CuTe-As $_2$ Te $_3$ system are compact in gray. The system alloys are resistant to water and organic solvents. They dissolve well in acids HNO_3 and H_2SO_4 . Alloys rich in As_2 Te $_3$ also dissolve in alkalis (NaOH, KOH). The DTA of the CuTe-As $_2$ Te $_3$ system showed that the thermograms of the alloys show two and three endothermic effects related to solidus and liquidus. The results of the microstructural analysis show that all alloys of the CuTe-As $_2$ Te $_3$ system are two-phase. Only based on As_2 Te $_3$ there is an insignificant range of solid solutions, and based on CuTe, solid solutions are practically not found. This indicates that the CuTe-As $_2$ Te $_3$ section is quasi-binary, of the eutectic type.

*Corresponding author: Aliyev II, Institute of Catalysis and Inorganic Chemistry, Azerbaijan

Submission:

November 17, 2020

Published:

December 14, 2020

Volume 14 - Issue 4

How to cite this article: Aliyev II, Ismailova SH, Kuluzade ES, Gashimov KM. Study of Phase Formation In The Cute-As₂te₃System. Res Dev Material Sci. 14(4). RDMS.000844. 2020. DOI: 10.31031/RDMS.2020.14.000844

Copyright@ Aliyev II. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use and redistribution provided that the original author and source are credited.

To confirm the results of DTA and MSA analyzes, an X-ray phase analysis of alloys of the system 30, 50, and 70mol % As, Te,. It was found that the diffraction patterns of alloys with the marked compositions, in addition to the composition of 50 and 92-100mol % As, Te, other alloys consist of mixed diffraction lines of the initial components. Content 50mol. % corresponds to the formula Cu₂As₄Te₉. The data obtained indicate that the CuTe-As₂Te₃ system contains one and two-phase alloys. The state diagram of the system is quasi-binary, eutectic type, characterized by the presence of one chemical compound of the composition Cu₃As₄Te₉. The Cu₃As₄Te₉ compound melts with an open maximum at 320 °C. Cu₃As₄Te₉ and As, Te, form a eutectic of 45mol % As, Te, and melts at 265 °C. The CuTe compound melts incongruently at 400 °C, above the peritectic temperature it decomposes according to the following reaction: $CuTe \leftrightarrow L + Cu_ATe_2$. In the concentration range, 0-25mol % As₂Te₂ primary crystals of Cu_4Te_3 are precipitated from the liquid. During secondary crystallization, three-phase regions are formed (L + $Cu_4Te_3 + Cu_3As_4Te_9$).

When measuring the microhardness of the alloys of the system, three different values of microhardness were established. The microhardness value for the CuTe compound varies in the range (400-530) MPa. The microhardness value (1960-1980) MPa corresponds to the microhardness of the $\text{Cu}_3\text{As}_4\text{Te}_9$ compound. The microhardness values for the $\alpha\text{-solid}$ solution based on As_2Te_3 vary from 1650MPa to 1850MPa.

Conclusion

The interactions between CuTe and As₂Te₃ are investigated in a wide concentration range and the T-x phase diagram of the system is constructed. It has been established that the CuTe-As₂Te₃ system

belongs to the eutectic type. One chemical compound $\mathrm{Cu_3As_4Te_9}$ is formed in the system. It was found that $\mathrm{Cu_3As_4Te_9}$ compounds melt congruently at 320 °C. In the system at room temperature, solid solutions based on $\mathrm{As_2Te_3}$ reach 8mol % CuTe, while solid solutions based on CuTe have practically not been established. CuTe and As_2Te_3 form a eutectic with coordinates 45mol % $\mathrm{As_2Te_3}$, temperature 265 °C.

References

- Goglidze TI, Dementev IV, Ishimov VM, Senokosov EA (2007) Influence of thermal evaporation rate on the main physical properties of glassy (As₂S₃) x (As₂Se₃)1-x alloys. Inorgan Materials 43(1): 90-93.
- Babaev AA, Muradov R, Sultanov SB, Askhabov AM (2008) Effect of preparation conditions on the optical and photoluminescent properties of glassy As,S₂. Inorgan Materials 44(11): 1187-1201.
- Rustamov PG, Safarov MG, Aliev II, Ilyasov TM (1979) AS No 689584 (USSR) Photosensitive material.
- 4. Berezin VM, Vyatkin GP (2001) Superionic semiconductor chalcogenides. p. 135.
- 5. Gurevich A, Kharkats I (1992) Superionic conductors. M Science, p. 288.
- 6. Blasnik R, Gather B (1971) The system Cu₂Te-As₂Te₃. 26: 1073-1078.
- Aliyev II, Aliyev OM, Mahammadrahimova RS (2019) Phase formation in the system InAs₂S₃Se-InAs₂Se₃S and properties of obtained phases. Journal AZ Chemistry 2: 50-53.
- 8. (1979) Physicochemical properties of semiconductor substances. Moscow, Russia, p. 339.
- Pashinkin AS, Fedorov VA (2003) Phase equilibria in the Cu-Te system. Inorganic Materials 39(6): 539-554.
- 10. Khvorestanko AS (1972) Arsenic chalcogenides. p. 92.

For possible submissions Click below:

Submit Article

Res Dev Material Sci Copyright © Aliyev II