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Abstract

Geopolymers are a new class of high performance materials able to replace traditional Portland cement due to its excellent mechanical properties, 
high initial resistance and durability. The raw material used for the production of geopolymers generally consists of industrial wastes such as fly ash 
and met kaolin, both rich in silica and alumina. Thus, geopolymers are an economically viable alternative for minimizing environmental impact by 
carbon sequestration. Although extremely resistant, their mechanical properties can be improved by the insertion of reinforcing agents. Among them, 
the fibers improve several properties such as tensile strength and toughness; besides allow controlling the cracking mechanism and the ductility of the 
geopolymer composites. Among the fibers used as geopolymer reinforcement the metallic, inorganic, organic and natural fibers should be highlighted. 
Each of these reinforcement materials influences positively the mechanical properties of the geopolymer composite, thus favoring a wide range of 
applications, especially in civil construction. Therefore, the objective of this work was to study the influence of the addition of different fibers on the 
mechanical properties of geopolymer matrix composites.
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Introduction

In 1978 the Australian researcher Davidovits [1,2] named 
inorganic polymers based on aluminosilicates as geopolymer. 
Geopolymers are materials formed via the polymerization 
reaction between the precursor aluminosilicates in alkaline 
solution. Its structure contains SiO4 and AlO4 ordered tetrahedral 
throughout the chain. Among the cavities are the alkaline ions that 
counterbalance the electric charges. Among the applications of 
the geopolymers, it is worth mentioning their use as binders, thus 
constituting an excellent substitution alternative to the traditional 
Portland cements, since they have superior mechanical properties, 
flammability, chemical resistance and durability. In addition, 
geopolymers can be prepared at room temperature with 80 to 90% 
reduction of CO2 emissions compared to Portland cements [3].

Geopolymers are produced from a range of industrial by-
products such as fly ash (produced by the burning of coal in 
thermoelectric plants), rice husk ash, sugarcane biogases ash, 
blast furnace slag, met kaolin and other mineral wastes containing 
sufficient amounts of alumina and silica. Despite the abundance of 
raw materials, the industries did not fully adhere to the geopolymers 
due to the high degree of variability in relation to environmental 
and financial costs [4].

The cost of the geopolymer is strongly related to the origin of 
the raw material, the source of energy and the means of transport. 
Depending on these three variables geopolymers may become 
more expensive than Portland cements [4]. Australia has abundant 
fly ash produced by coal-fired power stations. However, in Brazil, 
in addition to mineral reserves rich in aluminosilicates, there are 
many industrial processes that generate the fly ash that can be used 
to exploit this echnology [5].

In spite of these variables, geopolymers have been aware of 
the interest of the industries due to their characteristics such 
as: low density (700-1800kg/m3), easy processing, low cure 
temperature and being environmentally friendly. However, non-
reinforced geopolymers can suffer a fragile fracture, which limits 
its application in the civil construction area. Thus, in recent years, 
several studies have been carried out on composites of fiber-
reinforced geopolymers, as the fibers improve the strength and 
toughness of the geopolymeric composites [6].

In general, fibers and in particular polypropylene (PP) fibers 
are widely used as reinforcement for concrete (mixing of water, 
aggregates and geopolymer cement) because they reduce material 
shrinkage and improve the breaking strength of the single concrete. 
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The fibers can be divided into low and high modulus. Low modulus 
fibers such as nylon, polypropylene and polyethylene mainly 
improve energy absorbing and impact resistance characteristics, 
since high modulus fibers such as steel, glass and asbestos improve 
strength and hardness of composites [4].

Another characteristic of the fibers that influence the properties 
of the composites is its size. Short fibers can become agglomerated 
and generate void spaces compromising the quality of the 
composite. Long fibers present better results since the transfer 
of stresses from the matrix to the fibers is more efficient. The 
fibers can also be natural or synthetic, natural fibers have unique 
advantages as an environmentally friendly alternative because they 
have low density, lower cost, toxicity, and ease of processing [7].

Literature Review

Geopolymers

The geopolymers make up a family of materials based on 
polymerized oxide-aluminosilicates (pozzolans). The process of 
obtaining the geopolymers consists in the dissolution of Al and Si 
in alkaline medium. The alkaline solution is composed of soluble 
cations. Usually sodium or potassium based, the most commonly 
used being sodium hydroxide (NaOH) or potassium hydroxide 
(KOH), often combined with sodium or potassium silicate. After 
reaction of polycondensation, a gel of three-dimensional structure 
is formed that later hardens forming a mechanically resistant 
matrix [8].

Geopolymers are also called polysialates, terminology adopted 
as an abbreviation for poly (silico-aluminates) [9-11]. Its structure 
depends on the Si/Al ratio as described below: poly(sialate) –Si-
O-Al-O- (Si:Al=1), poly(sialate-siloxo) –Si-O-Al-O-Si-O- (Si:Al=2), 
poly(sialate-disiloxo) –Si-O-Al-O-Si-O-Si-O- (Si:Al=3), poly(sialate-
multisiloxo) (Si:Al>>3). The following formula describes the 
different structures: Mn[-(Si-O2)z-Al-O]n

.wH2O [12-14]. Where “M” 
is a cation (alkaline element), “n” is the degree of polymerization, 
the symbol (-) indicates the presence of a bond, “z” is 1, 2 or 3 and 
“w” is the degree of hydration [15].

The geopolymer structure resembles the zeolite structure 
[16-18]. The zeolites are hydrated aluminosilicates of alkali or 
alkaline earth metals (such as Na, K, Mg and Ca) composed of 
three-dimensional and porous crystalline structures, formed by 
tetrahedra of the type SiO4 and AlO4 joined in the vertex by atoms 
of oxygen [19].

Although the geopolymers have the same chemical constitution 
as the zeolites, they have a significant difference: the zeolites are 
highly crystalline whereas the geopolymers are amorphous or 
semi-crystalline [15]. However, during the geopolymerization 
process zeolites are formed, being the hydroxysodalite 
(Na6Al6Si6O24

.8H2O) an example of a type of zeolite formed by the 
activation of metakaolin with NaOH. Thermodynamically, the 
zeolite A –Na12Al12Si12O48

.27H2O is a metastable phase and thus 
tends to transform into hydroxysodalite over time [20].

According to Freitas [21] the composition and synthesis 

of geopolymers are determining factors for the hardening and 
curing process, as well as for the final mechanical behavior. The 
geopolymers harden at room temperature and have the high 
compressive strength (about 70% at 4 hours cure), a hardness of 
about 200HB (Hardness Brinell) and are stable at temperatures 
above 1400°C. However, they are brittle and require fibers to inhibit 
the formation of microcracks during geopolymerization.

Application of geopolymers in civil construction

Differentiated properties that allow specific applications can 
be achieved as a function of the Si/Al atomic ratio [22-29]. As the 
Si/Al ratio increases, increases the polymeric character suitable for 
applications where materials with high fire resistance are required. 
In the case of binder materials, applied in civil construction, these are 
predominantly amorphous and usually based on polysiloxosialate 
[30]. Geopolymers have a great potential application due to the high 
resistance to initial compression, fast stiffness, and low volumetric 
variation. They can be used in precast concrete industries, as well 
as re-plating in airport runways or roads, in the manufacture of 
mechanical blocks and the cementing of oil wells [31-37].

The optimization of the study of the properties of the 
geopolymer slides concerning the activator concentration, solid/
liquid dosage in the mixture, time and curing temperature allowed 
the use of the geopolymer slurries for the manufacture of products 
such as concrete mortars, geopolymer foam, solid blocks [38]. Hung 
[39] studied carbon fiber-reinforced geopolymer composites with 
potential application in environments where they require high 
resistance to burning, such as in-cabin interiors and other aircraft 
components. The results were propitious for burning resistance, 
UV resistance, and toxicity.

Vegetable Fibers

Among the numerous fibers available for the reinforcement of 
geopolymer composites, such as of vegetable origin deserve special 
mention. This is mainly because that they promote adequate 
reinforcement, associated with low cost and from renewable 
and abundant sources. Besides that, Brazil is a country with high 
biomass and great territorial extension that allows exploring the 
use of these fibers in geopolymer matrix composites [40-45].

Vegetable fibers can be classified according to their origin as 
leaf (sisal and curauá), seed (cotton), fruit (coconut) and stem 
(jute, flax, ramie, and hemp) [46]. Vegetable fibers, other than 
cotton, consist of cellulose, hemicellulose, lignin and other organic 
components. The main component of vegetable fibers is cellulose. 
The cellulose chains form micro fibrils which are joined together by 
intermediate lamella, made up of hemi cellulose and lignin [47-56]. 
Cellulose is a semi crystalline polysaccharide and possesses large 
amounts of hydroxyl groups. It provides fiber strength, rigidity, 
and stability [48,57-59]. Hemi cellulose is entirely amorphous and 
consists of hydroxyl and acetyl groups. It acts as a binding agent 
between cellulose and lignin [56]. Lignin is an amorphous polymer 
of complex structure and aromatic nature formed by phenyl 
propanoid units and is responsible for the mechanical resistance 
of plants [60].
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The hydrophilic nature of the cellulosic fiber is responsible 
for the weak resistance and weak interfacial bond when these 
fibers are used as reinforcement in hydrophobic matrices. The 
presence of the pendant hydroxyl group and polar groups leads 
to high moisture absorption through intermolecular hydrogen 
bonds, which leads to dimensional instability of the fiber and poor 
mechanical performance of the composite [61-63]. 

Surface treatment of vegetable fibers

A significant problem in the use of plant fibers is their durability 
and compatibility between the fiber and the geopolymer matrix. 
The alkaline matrix medium tends to weaken most of the vegetable 
fibers which are composed of various yarns of individual filaments 
which can be separated from one another. As consequence, 
occurs the loss of the mechanical properties of the cementations 
composite [64-67].One of the ways of improving the durability of 
the fibers is by reducing the alkalinity of the matrix by modifying its 
composition or by modifying the surface fibers which promote the 
increase of fiber-matrix adhesion [68-71]. However, lower alkalinity 
is not recommended, since this is the polymerization activation 
system. Therefore, the preferred route must be to modify the plant 
fibers, increasing their resistance to alkaline attack and improving 
their compatibility with the matrix. This increase in fiber-matrix 
interaction is significant because the interfacial region is primary 
to the transfer of tensions from the matrix to the reinforcement. 
Therefore, an inadequate adhesion between these phases may 
cause the initiation of failures thus compromising the performance 
of the composite [72,73].

To solve the problems of degradation and low interfacial 
adhesion, physical and chemical methods can be used to optimize 
cohesive strength at the fiber interface. These treatments modify 
the fiber surface through reactive functional groups capable of 
binding to the reactive groups of the matrix. Thus, these treatments 
generate hydrophobic fibers with a greater roughness of the fiber 
surface and greater affinity with the matrix [74-77]. However, prior 
knowledge of the chemical composition and morphology of plant 
fibers is essential to understand how fibers react to the attack of 
chemical agents [78]. Depending on the type of lignocellulosic 
fiber, the lignin can be entirely dissolved by the alkalinity of the 
geopolymer matrix resulting in a decrease in tensile strength 
[79,80].

Since natural fibers have hydroxyl groups of cellulose and 
lignin, they are subject to chemical modification. Among the 
various treatments of the fibers are alkali treatment, hornification 
(wetting and drying cycles in the fibers), isocyanate, acrylation, 
permanganate, acetylation, methane, cold plasma, silane, peroxides, 
among others [81-83]. Treatment with an alkaline solution (NaOH) 
also called mercerization, is widely used in plant fibers. This 
treatment can increase the roughness of the fiber surface, as it 
separates the fiber bundles by breaking the hydrogen bonds and 
removing the components of the cell wall. Thus, the wet ability 
(degree of contact of the interface surfaces) of the mercerized 

fibers increases by improving the cohesive force in the interfacial 
region [84,85].

 Surface modification of the jute fibers with chemical treatments 
is used to partially remove amorphous components such as hemi 
cellulose and lignin to obtain as much cellulose as possible with high 
levels of crystalline. The removal of the amorphous components 
allows a better packaging of the cellulose chains thus increasing the 
crystallinity, besides promoting the reduction of the diameter and 
density of the fibers [86,87]. The higher the cellulose contents in 
the fiber the higher the mechanical properties and the resistance to 
thermal degradation [88].

Ray et al. [89] evaluated the influence of alkali treatment on jute 
fibers. They observed a reduction of fibers, lower hemi cellulose 
content and greater crystalline after treatment. The authors used 
5% sodium hydroxide solution for immersion of the fibers for 2,4,6 
and 8 hours. Crystalline increased 23.4% over untreated fibers. The 
flexural modulus of the fibers increased by 12, 68 and 79% when 
exposed at 4, 6 and 8 hours, respectively, and the tensile strength 
increased 46% after 6 hours of immersion in alkaline solution.

Ferreira et al. [90] studied the effect of the hornification on the 
chemical and mechanical behavior of curauá, jute and sisal fibers. 
About 5 and 10 cycles of wetting and drying were applied to the 
fibers. The change in the cellulose crystalline and the possible 
bonds created between different polymer chains in the micro 
fibrils resulted in an increase in tensile strength and the number of 
cycles does not promote damage in curaua and jute structure. The 
hornification treatment promoted a higher fiber-matrix bond, also 
improving the frictional mechanism. 

The combined alkali and polymer treatment increase the 
workability yield mortar. The use of carboxylated styrene butadiene 
polymer latex promotes a fiber surface that is hydrophobic and 
acts as a bridge between fiber and the cementitious matrices, 
strengthening the interfacial bonding between them [91]. According 
to Chakraborty et al. [92] an optimal polymer content in emulsion 
(0.0513%) increased the compressive strength, modulus of rupture 
and flexural toughness, 25%, 28%, 387% respectively as compared 
to control mortar without any jute reinforcement [18].

Fidelis et al. [93] showed that pullout tests with coated fabrics 
formed a stronger bond than did the uncoated. For Portland cement 
matrix the maximum fiber pullout force decreased up to 85% after 
six months of accelerated aging. Whereas in metakaolin matrix 
the degradation process was retarded substantially. Therefore, 
polymer coatings improved the bond between fiber and matrix and 
reduce fiber degradation. Santos et al. [94] submitted jute fibers 
to one cycle of soaking and drying in an alkaline hornification 
treatment using calcium hydroxide (Ca(OH)2) 0.7% w/v. They observed 
that even with only one cycle of alkaline hornification was very 
efficient to remove partially the lignin and hemicelluloses from the 
jute fibers. In the fiber morphology, it was possible to observe an 
increase in the thickness of the secondary fiber wall and reduction 
of the lumen. The mechanical resistance increased by 70% in the 
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max load, 176% in the tensile strength, 133% in the strain and 9% 
to Young’s modulus.

Geopolymer matrix composites reinforced with natural 
fibers

Geopolymer composites have become a promising ecological 
alternative for traditional cementitious materials. They are 
profitable, environmentally friendly and their production involves 
a relatively small amount of energy. They also have excellent 
compressive strength, durability, and good thermal properties. 
The addition of fibers to geopolymer composites reduces the 
propagation of micro cracks and inhibits brittle behavior by 
increasing ductility [95].

Among the fiber reinforcements most used in geopolymers 
are inorganic fibers such as carbon and glass fibers. However, 
natural fibers have attracted attention because they are renewable 
materials, low density and low cost of obtaining [95]. The 
incorporation of metallic fibers increases the flexural strength 
since the non-metallic fibers control the contraction of the matrix 
due to the high contact surface [96]. The characteristics of the 
fibers depend on many factors such as fiber size, fiber type, elastic 
properties, aspect ratio (ratio of length to diameter-L/D) and fiber 
volume fraction. Each type of fiber can be useful for some specific 
function [97]. Several studies on the effect of different fibers on 
the geopolymer matrix will be presented below. Vegetable fibers 
have some advantages over synthetic fibers such as lower cost, 
lower density, biodegradable, renewable and abundant. These 
characteristics make the vegetable fibers attractive to the industries 
allowing their use as a reinforcing agent in geopolymers [95].

Correia et al. [98] studied geopolymer matrix composites 
based on metakaolin reinforced with sisal fibers (Agave sisalana) 
and pineapple leaf fibers (Ananas comosus). The authors used for 
both fibers 3% by volume and 25mm of length in the composites. 
After addition of the fibers in the geopolymer slurry, the material 
was cured at 55 °C for 24 hours. The mechanical properties tests 
showed that the composite reinforced with pineapple fibers 
presented resistance values (compression, traction, and impact) 
below the composites reinforced with sisal fibers, but above the 
pure geopolymer.

The authors Ribeiro et al. [5] produced geopolymer composites 
reinforced with bamboo fibers (Guadua Angustifolia). The 
geopolymer matrix was synthesized using metakaolin produced 
from kaolinite clay extracted from Amazonian soil. The bamboo 
fibers were treated with deionized water (immersion for 3 days) 
and sodium hydroxide (NaOH) to improve fiber-matrix interfacial 
adhesion. The composites, in general, presented improved 
resistance when compared to the pure geopolymer. There was no 
significant difference in the flexural strength of the fibers treated 
with water and NaOH. The results revealed that the bamboo fiber 
reinforced geopolymer composite is a potential building material, 
green and sustainable.

Geopolymer composites reinforced with short cotton fibers 
were prepared by Alomayri & Low [99]. They observed a minimal 
improvement in the flexural strength of the reinforced composites 
concerning the pure geopolymer. The increase in the fiber content 
of cotton promoted the formation of agglomerations and void 
spaces causing a poor dispersion of the fibers in the matrix, which 
decreased interfacial fiber-matrix adhesion and, consequently, led 
to the reduction of the mechanical properties of the materials.

However, in another paper authors Alomayri et al. [100] used 
continuous cotton fibers containing 0; 3.6; 4,5; 6.2 and 8.3 % 
mass. Also, the authors tested different amounts of layers, equal 
to 0, 5, 10, 20 and 40, respectively. It was found that continuous 
cotton fibers presented better properties than short cotton fibers 
because of their ability to effectively bind cracks in relation to their 
alignment in the direction of stress resulting in a greater transfer 
of interfacial tension in the composites. The composite containing 
8.3% continuous cotton fiber exhibited the highest flexural 
strength between the composites analyzed. The flexural strength 
of the composites increased from 8.2MPa to 31.7MPa compared 
to the pure geopolymer. This allowed concluding that the increase 
in cotton fiber content led to a considerable improvement in the 
flexural strength of the geopolymer composite.

As in the result of flexural strength, the increase of the amount 
of fiber present in the composites was proportional to the impact 
resistance. The strength of the pure geopolymer increased from 
2.1 to 15.6kJ/m2 after the addition of 8.3% of cotton fibers to the 
geopolymer composites. This significant improvement in impact 
strength can be attributed to the use of the applied load on the 
surface of the geopolymer composites during sample preparation, 
which aimed to expel trapped air into the matrix, forcing the 
geopolymer to penetrate into voids and porous spaces. As a 
consequence, the cohesion between the fibers and the matrix was 
increased resulting in an increase in impact strength [100].

Dong et al. [32] used sorghum fibers to prepare geopolymer 
composites. In order to increase fiber-matrix interfacial adhesion, 
the sorghum bagasse fibers were treated in 2M NaOH solution for 
12 hours. The alkaline solution was chosen because of compatibility 
with the alkali environment of the geopolymer. The alkali treatment 
of the fibers gives rise to the fibrillation (separation in fibers of 
smaller diameter) promoting a better surface of contact with the 
matrix. The performance of the composites was improved with 
the increase of the fiber content, but the excess of fiber promoted 
drastically the reduction of the properties of the geopolymer 
composites.

The splitting tensile test showed brittle fracture of the 
pure geopolymer sample and ductile fracture of the reinforced 
geopolymer containing 1% by mass of sorghum. The rupture of the 
fibers during the loading process absorbs energy and thus improves 
the tenacity of the geopolymer paste [101]. Assaedi et al. [102] 
studied the mechanical and thermal properties of geopolymer 
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composites based on fly ash reinforced with continuous flax fibers. 
The amounts used were 2.4; 3.0 and 4.1% mass of flax fabric in 
several layers. All mechanical properties such as flexural strength, 
compression, fracture and hardness were improved by increasing 
the amount of flax fibers employed, showing superior properties to 
the geopolymer matrix. 

The flexural strength increased from 4.5MPa of the pure 
geopolymer to 23MPa of the composite containing 4.1% of flax 
fiber. The increase in the content of flax fibers has led to a significant 
improvement in flexural strength and this can be explained by the 
number of reinforcement layers that controls the flexural strength 
[102]. This improvement can also be seen in the work of Alzeer & 
Mackenzie [3] that observed the flexural strength increase from 
6MPa of the pure geopolymer to 70MPa of the composite containing 
10% vol. of flax fiber. The addition of 10% of flax fiber allowed the 
geopolymer to change its brittle fracture behavior to a high ductility 
behavior.

The thermogram of the flax fibers presented three stages 
of degradation. The first transition occurred at approximately 
25 to 240 °C related to the elimination of water molecules. The 
largest mass loss occurred between 240 and 365 °C related to the 
decomposition of cellulose [102]. This result is in agreement with 
those of Alzeer & Mackenzie [3], according to which, the greatest 
mass loss of short flax fibers under airflow is in the range of 240 to 
340 °C. The final phase occurs above 365°C when the fibers begin 
to decompose.

The loss of mass of the pure geopolymer occurred in the range 
of 25 to 300 °C caused by the evaporation of physically absorbed 
water. Above 300 °C the mass loss was related to the dehydroxylation 
of the chemically bound water. The composite presented a mass 
loss of 10.5% at 260 °C relative to the evaporation of physically 
absorbed water. Above 260 °C, the composite presented more mass 
loss related to the degradation of the fiber content present in the 
sample. This is related to the porosity of the geopolymer matrix 
that allowed oxygen to enter, thus promoting the degradation of 
the fibers at high temperatures. The composite presented a total 
mass loss of 15% at 300 °C indicating a greater degradation of the 
fibers inside the composite [102]. Thus, among the many fibers 
available for the reinforcement of geopolymeric composites, those 
of vegetable origin deserve special mention. This is mainly due 
to the fact that they promote adequate reinforcement, associated 
with low cost and high availability. In addition, Brazil is a country 
that has high biomass and great territorial extension that allows 
exploring the use of these fibers in geopolymer matrix composites 
[95].

Conclusion

The studies evaluated in the present work allow concluding 
that the addition of fibers as a reinforcement element improves the 
mechanical properties of the geopolymer composites in relation to 
the matrix without reinforcement. According to the works studied, 

the mechanical behavior of the geopolymer matrix composites is 
influenced by a series of characteristics of the fibers and also of 
the matrix such as: fiber content and type, length to diameter ratio 
(L/D) of fibers, dimension of the aggregates, origin and dosage of 
the raw material for matrix formulation and fiber-matrix interfacial 
adhesion.

The metallic, organic, inorganic and natural fibers each have 
a particular mechanical performance, specific for a particular 
type of application. A common feature of these fibers is that they 
all promoted a significant increase in the physical properties 
of the geopolymer. However, the reinforcement with natural 
fibers proved to be the most complex, since it involves the use of 
materials that present different physical properties, associated to 
a polydispersity of these properties, which requires pretreatment 
steps of these fibers. These treatments homogenize the fibers or 
even alter their surfaces, producing a better interface, which greatly 
improves the mechanical properties of the geopolymer composites. 
This continued improvement in the properties of vegetable fibers 
will allow for the preparation of more resistant and less carbon 
footprint geopolymer systems, which makes these systems of great 
interest for the production of large-scale artifacts.
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