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Antiferromagnetic Insulator Double Perovskite 
La2CoZrO6

Introduction
Recently, magnetic half-metals have been in high interest in 

spintronic applications [1], such as magneto dielectric capacitors 
[2,3] and spin filtering tunnel junctions [4-8]. Double perovskites, 
compared with other complex crystal structures, are relatively 
simple and convenient for integration [9]. Double perovskite half-
metals have three attributes: 

1.	 Quantization of the magnetic moment 

2.	 100% spin polarization at the Fermi level

3.	 Zero spin susceptibility

Their special attributes have brought about many experimental 
and theoretical researches, with various findings including 
Ferromagnetic half-metals with near room temperature Curie 
temperatures found in ordered double perovskites such as 
La2NiMnO6 (TC=280K) [10] and Bi2NiMnO6 (TC=340K) [11]. 
However, some double perovskite magnetic insulators are 
antiferromagnetic (AFM) and not ferromagnetic (FM), such as in the 
cases of La2VTcO6 and La2VCuO6 [12]. In many cases, the existence 
of half-metal (HM) is related to double-exchange or super exchange 
interactions. Sr2CoZrO6 and A2CrRuO6 (A=Si, Ge, Sn, and Pb) are both 
half-metals attributed to super exchange and generalized double-
exchange mechanism [4,13]. When structuring A2BB’O6 half-metal 
materials [14], A is usually exchanged with alkaline metals or rare 
earth metals (Ca, La, Ce etc.), while A=La in this paper. BB’ can be 
any combination of the 29 transitional metal elements other than 
A (Ca, Ce etc.).

It is a time-consuming task to calculate the 406 29
2C  combinations, 

and when searching for magnetic properties, we first used VASP 
code to calculate the self-consistent electronic structure of all 406 
La2BB’O6 compounds. Fuh et al. [15] have mentioned that the states 
of FM-semiconductor states in the BB’ pairs of Fe (Co, Rh, Ir) are 
stable against antiferromagnetism and hence we do not consider 
them any further. 

The aim of this paper is to search for new antiferromagnetic 
insulators from double-perovskite oxides. Here, we use first 
principle theory to calculate and explore potential insulating 
material La2CoZrO6. In transition metal oxides, the fact that strong 
electron correlation cannot be observed with GGA calculations 
should be corrected with GGA+U [16-19]. In GGA+U, the effective 
parameter Ueff=U–J is used [16], with U and J being coulombs and 
exchange parameters, respectively. In this paper, for simplicity, 
we use U to represent Ueff. In the following discussion, we focus 
on the physical properties and correction effect on the electronic 
structures of possible AFM insulator La2CoZrO6.

Discussion
Computational method

The first principle DFT calculations for theoretical calculations 
and the electronic structure calculations with generalized gradient 
correction (GGA) [17] plus on-site Coulomb interaction U (GGA+U) 
[18-20] are used. Structural optimization calculations (i.e., 
relaxation for both lattice constants and atomic positions) were 
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carried out with the all full-potential projector-augmented wave 
(PAW) [21,22] method, carried out with the VASP package [23,24]. 
We used the conjugate-gradient (CG) method to find the stable ionic 
positions, and the energy convergence criteria for self-consistent 
calculations were set to 10-6 eV. We also used the 8*8*6 k-point 
grids in the Brillouin zone and set the cut-off energy of the plane 
wave basis to 450eV. To determine the theoretical lattice constants 
and atomic positions through structural optimization calculations, 
a conjugated-gradient method was used under the conditions of 
forces and stresses lower than 0.03eV/A and 0.9kBar, respectively. 
To reduce symmetry by relaxing the structure, we used a larger unit 
cell with two f.u., as shown in Figure 1. The crystal parameters from 
full optimization calculations are listed in Table 1. La2CoZrO6 has a 
c/a ratio close to the ideal value of √2, meaning that the structural 
shape is close to the ideal double perovskite structure. We not 
only carried out full structural optimizations, but also put into 
consideration the possibility of four distinct magnetic orderings: 
nonmagnetic (NM), ferromagnetic (FM), ferrimagnetic (FiM), and 
antiferromagnetic (AFM) phases in Figure 2.

Figure 1: An ideal double perovskite ordered structure, 
La2CoZrO6, where there are 4 kinds of O, O1(0, 0, 0.2434), 
O2(0.5, 0.5, 0.2566), O3(0.2428, 0.2428, 0), O4(0.2572, 
0.2572, 0.5).

Figure 2: The schematic diagram of 4 magnetic states: FM, FiM, AF and NM.

Table 1: Structural parameters of the possible AFM-Is material in 
the fully optimized structure.  

La2CoZrO6

a (Å) 5.6623

c/a 1.4173

V0/f.u 126.8854

O1 (0, 0, 0.2434)

O2 (0.5, 0.5, 0.2566)

O3 (0.2428, 0.2428, 0)

O4 (0.2572, 0.2572, 0.5)

La2CoZrO6 are in space group (123 P4/mmm) where La(x, y, z) = 
(0, 0.5, 0.75), Co1(x, y, z) = (0, 0, 0), Co2(x, y, z) = (0.5, 0.5, 0.5), 
Zr1(x, y, z) = (0.5, 0.5, 0), and Zr2(x, y, z) = (0, 0, 0.5). O1(x, y, z) = 
(0, 0, O1z). O2(x, y, z) = (0.5, 0.5, O2z). O3(x, y, z) = (O3x, O3y, 0). 
O4(x, y, z) = (O4x, O4y, 0.5).

Results
Table 2: Calculated physical properties of the La2CoZrO6 in double perovskite structure in the full structural optimization calculation 
of GGA (+U). 

Material U(Co, Zr)
Spin Magnetic Moment (μB/f.u.) d Orbital Electrons ↑/↓ Band Gap ∆E (meV/f.u.)

mCo mZr mtot Co Zr (eV) AFM-FM

La2CoZrO6 (0, 0) 0.93 0.012 0 4.136/3.211 0.845/0.835 0.00/0.00 -219

La2CoZrO6 (5, 2) 2.696 0.026 0 4.987/2.311 0.807/0.791 0.95/0.95 -647

AFM: Antiferromagnetic; FM: Ferromagnetic

Table 2 shows the calculated quantities of electronic and 
magnetic properties. In the AFM ordering, La2CoZrO6 shows 
conducting metal and insulating attributes in the GGA and GGA+U 
scheme respectively. La2CoZrO6 has the lowest energy state in the 
AFM-Is ordering under GGA+U, at 647meV below the FM state’s 

energy. With GGA, in the AFM ordering, La2CoZrO6 is conducting in 
both spin channels, resulting in a metal, at 219meV below the FM 
state’s energy. The band gap for both spin channel opens to 0.95eV 
in the AFM ordering after +U, resulting in an AFM insulator.
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The total DOS in the GGA scheme for La2CoZrO6 is presented in 
Figure 3a, and the total DOS in the GGA+U scheme for La2CoZrO6 is 
presented in Figure 3b. The charge configuration in GGA is Co1.653 
(3d7.347) and Zr2.320+ (4d1.680). The charge configuration in GGA+U is 
Co1.702 (3d7.298) and Zr2.402+ (4d1.598).

Figure 3a: Total DOS of AFM-state La2CoZrO6 in the GGA 
scheme.

Figure 3b: Total DOS of AFM-state La2CoZrO6 in the 
GGA+U scheme.

Conclusion
We have carried out full research of ordered double perovskite 

La2CoZrO6. The full structural optimization calculations results 
show La2CoZrO6 has potential to be an antiferromagnetic insulator. 
According to the energy levels, AFM-Is is the most stable state. 
We hope that these findings can encourage further experimental 
research on antiferromagnetic insulators.
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