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Data-Constrained Modelling of Material 
Microstructures and Properties

Introduction 
Although the X-ray CT and threshold image segmentation 

approach is widely used in the R&D community for sample-non-
destructive (SND) characterization of internal microstructures 
of various materials [1], it is subjective and imposes an arbitrary 
length-scale cut-off at the X-ray CT voxel size. It generally assumes 
that each X-ray imaging voxel has a discrete material composition. 
That is, there are no finer structures smaller than the X-ray imaging 
voxels. The smallest X-ray CT voxel size is at the order 1/1000 of 
the sample size. In other words, the mainstream X-ray CT approach  
 
is inadequate to characterize material internal structures smaller 
than the order of 1/1000 of the sample size. This makes it not 
suitable for materials with multi-scale internal structures such 
as tight oil & gas reservoirs including shale, carbonate and tight 
sandstone; manufactured materials such as 3D-printed metal  

 
components, and corrosion inhibitive print primers [2-4]. As image 
segmentation is based on the X-ray CT slice image grey-scale, it is 
not sensitive enough to discriminate material compositions with 
similar X-ray attenuation properties. 

The problem is addressed with the recent development in 
data-constrained modelling (DCM) method using quantitative 
X-ray CT [5,6]. By integrating statistical physics and multi-energy 
quantitative X-ray CT, DCM Video 1 explicitly reconstructs 3D 
microscopic distributions of materials and incorporates fine 
structures below X-ray CT image resolution as voxel compositional 
partial volumes. This offers a more accurate 3D representation of a 
material microstructure and enables more quantitative modelling 
of its properties. The DCM formulation will be presented in the next 
section, followed by a selection on case studies and references.

1/3Copyright © All rights are reserved by YS Yang.

Volume 5 - Issue -3

Mini Review

Research & Development in 
Material Science  C CRIMSON PUBLISHERS

Wings to the Research

ISSN: 2576-8840

Abstract 

This article is a review of our recent development in data-constrained modelling (DCM) methodology for quantitative and sample-non-destructive 
(SND) characterization of 3D microscopic composition distribution in materials, and microstructure-based predictive modelling of material multi-
physics properties. Potential impacts are illustrated with examples in a range of R&D disciplines.
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Model Formulation
For DCM, a material sample is represented numerically on a 

simple cubic grid of x y zN N N N= × ×   cubic vowels. On the nth voxel 
where n=1,2,…,N, the DCM model minimizes the following objective 
function:
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This is equivalent to minimize the discrepancy between the 
expected and the measured linear absorption coefficients and to 
maximize Boltzmann distribution probability [7]. In Equation (1), 

( )l
nδµ  is the difference between the expected and CT reconstructed 

linear absorption coefficients, and En is the dimensionless 
phenomenological interaction energy [5,8]. The optimization is 
achieved by adjusting the volume fraction variables ( )m

nv  (m=0,1,…
,M) for each material composition m, where M is the total number 
of non-void compositions, subject to the following constraints
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Numerical solution to the above has been implemented as 
a DCM software [5,6]. Figure 1 is a typical main window of the 
DCM software. In DCM, sub-voxel structures are incorporated as 
coexistence of multiple compositions in the same voxels.

Figure 1: DCM software main display window for a case-study on cold-spayed Ti sample.

                               (a)        (b)             (c)

Figure 2: Microstructure and properties of a CIPS sandstone sample. 

2a: Compositional distribution where quartz is displayed as blue, calcite as red and pores as green. Coexistences of multiple 
compositions in the same voxels are displayed as mixed colours. 

2b: Induced electric potential when the pores are filled with the sea water and an external potential difference is applied along 
the Z-axis. 

2c: Fluid speed distribution when a pressure difference is applied along the Z-axis. 
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Microstructure Characterization and Properties 
Modelling

As a demonstration case study for synthetic CIPS (Calcite In-
situ Precipitation System) sandstone, which consists of quartz 
grains cemented by calcite, and pores? It was X-ray imaged at 
beam energies 35 and 45keV. The multi-energy X-ray datasets were 
analyzed using the DCM non-linear optimization algorithm [5]. The 
procedures of the analysis are demonstrated by the accompanying 
video https://research.csiro.au/static/dcm/DCM-CIPS-sandstone-
web-demo.mp4. Each voxel represents a sample volume of microns. 
Assuming the pores are filled with the sea water, its electrical 
conductivity and permittivity had been calculated using a finite-
difference DCM plugin [9]. Its fluid permeability was calculated 
using a DCM plugin for partially percolating voxels [10,11]. Its 
composition distribution, induced voltage and fluid flow speed are 
illustrated in Figure 2.
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