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A Nano Capacitor Including Graphene Layers 
Composed with Doped Boron and Nitrogen

Introduction

Graphene individually has a structural flexibility due to its 
electronic properties. Because of electronic flexibilities, graphene 
might be fitted chemically in a deposit metal atoms on top [1], The 
deposit molecules on it [2], incorporated nitrogen and boron in 
their structures [3] and doped atoms inside the sheets. They can 
be used in a field of the electronics, capacitors, superconductors, in 
batteries and diodes. The considerable tends of graphene are the 
Dirac solid, with the electron energies being linearly dependent on 
the wave vectors near the vertices of the hexagonal Brillouin zones 
[4]. Complete histories for the rising of graphene have given by 
Geim & Novoselov [5]. 

In this work the properties of various dopants with the 
electronic structures of a few-layer graphene into two side 
electrodes in the capacitor has been studied. In this matter, it 
has been investigated a nano-capacitor through B- and N-doped 
graphene bilayers employing different strategy for its structure and 
properties. The B and N atoms are the natural templates for doping 
in graphene due to their similar atomic size as that of C and of their 
hole acceptors and electron donors characters for substitution B- 
and N-doping, respectively.

It has been modeled by two configurations of doped bi-layer 
graphene including various atoms such as (h-BN)n sheets (n=1-
4). Our nanoscale capacitors model are composed of hexagonal 
(h-BN)n layers (n=1- 4), which are stacked between two graphene 
electrodes. The single and multi-layers of (h-BN)n are wide band 
gap insulators, so they can be applied as a dielectric material  

 
between metallic graphene layers. An effort has been accomplished 
for understanding the theoretical basis for the nanoscale dielectric 
capacitors which are professional to another system of energy 
storage. In fact, capacitor at nanoscale has been developed as one 
of the most expecting energies storages mediums [6,7].

That h-BN layers of each thickness might be grown on the 
graphene electrodes it has been already shown both experimentally 
[8] and theoretically [9,10]. It is also perpendicular carbon to grow 
BN chains (also available) on top of the graphene and h-BN single 
layers [11,12]. 

At the nanoscales, since the separation thickness of capacitors 
model can be as smaller as a nanometer size, the stored energy has 
to be calculated from the first principle calculation [12-14] which 
allows to treat the distribution of only one kind of excess positive 
or negative charges at a time (in the same system) [13-16]. In 
this work it has found a significant increasing of capacitance and 
negative quantum capacitance based on percentages of B dopants 
and thickness of h-BN layers. 

Via applying an external electric fields perpendicular to the 
graphene electrodes the charge separation might be achieved in 
this situation and simulates of the operation by the surface charge 
with opposite sign initially stored on different doped plates create 
perpendicular electric fields. The shorting of these two plates and 
hence the discharges of the capacitors are prevented by placing 
sufficient quantities of h-BN layers between doped graphene plates. 
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Abstract

In this study, it has been found a configuration including dopant atoms which are replaced in a diagonal line through hand-running atoms from 
each other. Those are more favorable energetically, and the configuration with atoms of boron and nitrogen are more stable with binding energies. This 
phenomenon confirms the homogeneous B-substitution that may be easier than the other atoms such as N-substitution. The root of these differences 
might be affected the structure of B-C bonds which are about 0.5% longer than the C-C bond. Band-gap is opened through the effect of substitution 
B atom doping on the structure of graphene and the Fermi levels lies in the valence and conduction bands. It has been shown a model of a nanoscale 
dielectric capacitor composed of a few dopants including metallic graphene layers separated by an insulating medium containing a few h-BN layers
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Based on electrostatic theory the geometric capacitance 
densities, “ gC ”, is related to the applied Voltage, appV∆  as the equation 
of: 0r

g
app

AC
V d

ε εσ
= =
∆ (1) where σ is the surface charge densities, εr, ε0 are 

the dielectric constant and absolute permittivities respectively. 
Ajayan [17] has found a significant increasing in the capacitance 
below the thickness of “5nm”, more than what is predicted by 
classical electrostatic. This unusual increase in a capacitance is 
because of the negative quantum capacitance that this particular 
materials system exhibits (Figure 1). 

Figure1: Nano-capacitors models.

	

Theoretical Back Grounds and Model

Figure 2: Density versus atomic position.

The patterns of negative quantum effects in the interaction 
between the gold electrodes and h-BN films have investigated by 
Ajayan [17]. Ajayan have determined the dielectric permittivities 
as a function of dielectric size through ab-inito calculation using 
the SIESTA atomistic simulation package [17].The Nano-dielectric-
capacitor models or NDC have been successfully used for simulating 
stacking structure of G/h-BN/G [18]. Density functional theory with 

the van der Waals density functional for modeling the exchange-
correlation energy of Au and h-BN have been employed through a 
relativistic pseudo-potential method [19-21] (Figure 2).

It has been considered two isolated metal-doped-graphene 
(MDG) layers where each one is fully charged by Q electrons per 
primitive unit-cells . The NDC models with (h-BN)n layers (n=1, 2, 3) 
as dielectric are covered through two parallel MDG (M=Mg, Al, Si, B) 
layers. In our model the interlayer distances for h-BN varies in the 
range of {3.0-5.0} Å, which they are the beset interaction, while the 
3.55 is in a reasonable data and agreement with the experimental 
variables (3.306 Å) [22] and also theoretical values [23] (Figure 3). 

Figure 3: LOL color field map.

Recently a few works [7,16,22-25] indicate an abnormal 
increasing in the capacitance along decreasing size of nano-system 
including negative quantum capacitance. These effects arise from 
many-body interaction because the chemical potentials of the 
electron decrease with increasing of electron density. Maccuci 
[26,27] exhibited a capacitance of quantum dots. Another work on 
non-linear quantum capacitances [28] and atomic junctions [29] 
has been investigated by Wang et al. The hybrid capacitances and 
then quantum capacitances are related to the net capacitances, C, 
with the relation  1 1 2

g QC C C
= +  (2) and the values of CQ are many orders 

of magnitude greater than the Cg, and hence its effect usually 
appears only in the very small systems [17]. 

The QM components are development of the density of state 
(DoS) for the metal electrodes, and their Thomas-Fermi screening 
length. Hence the hybrid capacitances of each nano-capacitors 
architecture are given as:

1 2

1 1 1 1

t Q Q gC C C C
= + +  (3) Where C_t is the total 

capacitance of the nano-capacitors, in addition Cg is the classical 
capacitances, CQ1 and CQ2 are the quantum capacitance due to 
their finite DoS of the metal doped graphene electrodes (M1G, and 
M2G, respectively).

If  1 2Q Q QC C C≅ ≡ then 
0

( hom )

( )metal
Q

t as fermi metal

AC
r

ε ε
ε−

=  (4) which 0
( hom ) 2 ( )t as fermi

f

r
e D

ε
µ− =  

(5) 3 1

1 2

( ) ( . )n n
f

d dD J m
d dµ µ

µ −= = (6), which D is is the DoS at the Fermi level 
[30,31] of either electrodes. ( hom )

0

3.39 10 s
t as fermi

rr
a

−
− = ×  (7) which   for metal 

for metal=Au [31]. Hence the hybrid capacitances due to its 
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composition of both classical and quantum capacitances can be 
yielded by 1(2 1)t gC Cγ −= +  and 2

( hom ) 1( )t as fermi r

metal

r
d

εγ
ε

− −=  (8) (Figure 3).

Computational Details

Calculations were performed by GAMESS-US package [32]. In 
this work, we have focused on getting the results from DFT methods 
for the non-bonded interaction of graphene sheets composed with 
boron and nitrogen doping. They also are monotonous through 
the comparison between different situations. Density functional 
theory with the van der Waals density functional (vdW-DF) has 
been applied to model the exchange-correlation energy of doped 
graphene and h-BN [19]. The double ζ-basis sets with polarization 
orbital (DZP) was used for doping while single ζ-basis sets including 
polarization orbitals (SZP) was employed for the h-BN layers, 
respectively. The m062x, m06-L, and m06-HF are new method 
within good correspondence in the non-bonded calculation and 
are suitable for the energy of the distances between two fragments 
in the capacitors. For a non-covalent interaction; B3LYP is unable 
for describing van der Waals [33,34] capacitor systems in medium-
range interactions, such as the interactions of two electrode and 
dielectric sheets.

In addition, some recent study has shown the inaccuracy of the 
medium-range exchange energies leads to large systematic error in 
the prediction of molecular properties [35-39]. Graphene is known 
in 2-D honeycomb structures and the B and N doped graphene will 
be assumed to have a similar structure, unless violated by energies 
minimization considerations. A monolayer of G was optimized and 
allowed for relax to its minimum energies structure; it contains 
76 atoms with zigzag edges. The edges were saturated with the 
hydrogen atoms to neutralize the valance of terminal carbons, 
reducing edges effects [40].

Geometry optimizations and electronic structure calculation 
have been performed using the m06 (DFT) which the approaches 
are based on an iterative solution of the Kohn-Sham equation 
[41] of the density function theory in a plane-wave set with the 
projector-augmented wave pseudo-potentials. The Perdew-Burke-
Ernzerhof (PBE) [42] exchange-correlation (XC) functional of 
the generalized gradient approximation (GGA) is adopted. The 
optimizations of the lattice constants and the atomic coordinates 
are made by the minimization of the total energies. The dimension 
of capacitors has been set as 12.388×3. 95×8.52 Å (scheme 1) and 
the sheets are separated by various distance (Table 1 & 2) along the 
perpendicular direction to avoid interlayer interaction. During all of 
the calculations processes, except for the band determination, the 
partial occupancy was treated using the tetrahedron methodology 
with Blöchl [43] corrections.

In our model the electrodes have doped through various 
percentage of boron atoms which are likely to adjust for 
surrounding C atoms of the host. Therefore when the graphene 
sheet is doped with one boron atoms, the boron atoms also 
undergoes sp2 hybridization and due to the nearly same size of 
C and B, no significant distortion in 2-D structure of graphene are 
expected, except for change in adjoining bond lengths. By doping 

boron atoms in graphene Fermi level shifts significantly below the 
Dirac point resulting into a p-type doping and the symmetries of 
graphene have broken in two graphene sub-lattices because of 
introduction of B atom and causes for changing the behavior of 
graphene from semimetal to conductors. The charges transfer and 
electrostatic potential-derived charges were also calculated using 
the Besler [43], Chirlian [44], Brneman [45] (Figure 4).

Figure 4: Contour map of ELF.

Figure 5: Average local ionization energy.

The charges calculation method based on molecular 
electrostatic potentials (MESP) fitting are not well-suited for 
treating larger system where some of the innermost atoms are 
located far away from the points at which the MESP is computed. In 
such a condition, variation of the innermost atomic charge will not 
lead to significant changing of the MESP outside of the molecule, 
meaning that the accurate value for the innermost atomic charge 
are not well-determined by MESP outside of the molecules. The 
representative atomic charges for molecule should be computed as 
the average value over several molecular conformations. A detailed 
overview of the effect of the basis set and the Hamiltonian on the 
charge distribution can be found in [46,47]. We have also extracted 
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the charges density profiles from the first-principles calculation 
through an averaging process described [48,49]. 

Although infinite graphene sheet are intrinsically metallic, our 
BG system exhibits an increasing in the metallic properties. The 
interaction energies for capacitor were calculated in all items as 
the equation: + ( ) { (2 )}s c Dopant G h BN BSSEE eV E E E E− −∆ = − + +   (9) where the 
“ sE∆  ” is the stability energy of capacitor. The fundamental of this 
work is based on our previous works [50-84].

Results and Discussion

In this work, the values of the distance between graphene 
layers capping h-BN layers, dielectric constants of the layered h-BN 
sheets (k), magnitude of the charge on the graphene electrode, the 
stabilities energies of capacitors (in eV) and potential difference 
between the electrodes of graphene plates are listed in Tables 
1-3. Using various percentages dopants in tables indicate proper 
situations for boron and nitrogen dopants in graphene electrodes.

Although the dielectric strength can be deduced from the 
band structure of BN spacer, here we have calculated the dielectric 
constant straightly from (eq.1), which is much more accurate than 
the other methods. The potential energy difference between the 
two graphene layers, (1) (2)( )B G B GV V V− −= ∆ −  are shown in Table 3. 
In addition, according to electronic structures we have considered 
two isolated graphene layers, which each one is doped by boron 
atoms in various distances. They have been charged by m Gq+

−  and 

m Gq−
− electrons per primitive unit-cells 2

C
m

σ± , which are shown in 
Tables 1-3.

The atomic structures, interlayer spacing, relative positions 
of the layers and the cell parameters are optimized. It is obvious 
that for BN spacer consisting of a few layers, the different voltages 
among electrodes depend on various conditions such as non-
equilibrium state, the coupling between graphene and adjacent 
h-BN, etc. and require a thorough analysis. In Tables 1-3, we have 
shown comparison among the stability 2

C
m

σ±  and Gap Energy (eV) of 
various dopants’ percentage.

Conclusion

In this study, we have shown the model of a nanoscale dielectric 
capacitor composed of various percentage dopants including h-BN 
and graphene sheets separated by an insulating medium containing 
a few layers. We showed that in this model, the percentage dopants 
play significant roles in the nano capacitors. The capacitor with 
medium percentage of boron nitrides dopants has the high 
dielectric constant. Our theoretical results show that the relative 
permittivity of dielectric can be higher than that of no percentage 
of boron nitride. 
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