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Abstract 

An innovative, alternative method to improve the undesired residual stress state during the welding process without time-consuming post weld
treatments was overviewed. The LTT ‘smart’ alloy weld filler can effectively reduce the harmful tensile residual stress and even generate the beneficial
compressive residual stress, due to the volume expansion of low temperature martensitic transformation. This paper briefly describes the mechanism
and research of the formation of residual stress related to LTT weld filler. 
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Introduction


One of the major problems in welded structures is the welding
residual stress (WRS) caused by the inhomogeneous temperature.
Many studies have proved that it is detrimental to structural
integrity especially when there exist tensile residual stresses [1].
Kannengiesser et al. [2] and Murakawa et al. [3] mentioned that
the tensile WRS has a great effect on the crack resistance and the
service load. Ohta et al. [4] reported that the additional tensile WRS
weaken the fatigue performance of welded joints. On the contrary,
compressive WRS can refine martensitic grain and improve
fatigue performance of weld joints [5,6]. Therefore, how to control
tensile WRS or even introduce compressive WRS to the weld is of
significance to improve the integrity of weld structures.

Various conventional methods such as mechanical means (e.g.,
shot peening, grinding and vibration aging) and post-welding
heat treatment are available for re-modifying the state of WRS in
welds [7-9]. However, these techniques are cost intensive and time
consuming, or even inappropriate for large-scale and inaccessible
weld components. The low transformation temperature (LTT) weld
filler as a novel technique to mitigate the tensile WRS was introduced
in this paper, which can utilize the metallurgical characteristics. 



Theoretical Basis of LTT Alloys
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Figure 1:    Illustration of internal stress evolution during heating/cooling.




Depending on the chemical composition and cooling rate of
the austenitizing area, the austenite decomposition can be divided
into two categories: diffusional transformation and displacive
transformation. The former is ferrite or pearlite transformation
at high temperature, while the latter is bainitic or martensitic
transformation at low temperature [10], as illustrated in Figure 1.
Due to the difference in the lattice type and the thermal expansion
coefficient between austenite (face-centered cubic, FCC) and its
decomposition phase (body-centered cubic, BCC), the volume
expansion caused by phase transformation would be emerged
[11,12]. Nevertheless, the diffusional transformation has a slight
effect on the evolution of WRS. Because the phase temperature is
higher than the plastic temperature of the alloy material, resulting
in the volume expansion converted into plastic deformation. Figure 2
shows that the strain caused by the martensitic transformation
is the backbone to offset the shrinkage-related stresses. Thus,
the martensitic transformation shows an obvious advantage for
controlling the tensile residual stress. Nitschke et al. [14] concluded
that martensite is the most appropriate microstructure for stress
reduction. Notice that the WRS would accumulate subsequently in
the range from transformation finish to ambient temperature.
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Figure 2:    Schematic illustrations of the (a) yield strength variation and (b) evolution of stresses during cooling of austenite,
bainite, and martensite after [13].






The LTT alloys exhibited a low Ms temperature, which is fully
exhausted during cooling to ambient temperature and does not
sacrifice mechanical properties. Unfortunately, some LTT alloys
reduce Ms temperature by increasing carbon content, resulting in
low fracture toughness [15]. Shirzadi et al. [16] solved this problem
by employing other less detrimental composition to reduce Ms.




Applications of LTT ‘Smart’ Alloys to Reduce Residual
Stress


In recent years, the investigation of the residual stress in the LTT
weld was studied by many researchers. Ohta et al. [17] compared the
residual stress of the LTT and conventional welding consumables
by finite element simulation. The results show that the compressive
residual stress occurs at the weld joint with the LTT filler. Moat et
al. [18] and Lixing et al. has also proved the same conclusion that
the longitudinal residual stress show a significant shift from tensile
to compressive stresses due to martensitic transformation [18,19].
The Satoh test indicated that the residual stress would decrease
with the decrease of the martensitic transformation temperature of
the LTT weld metal [20].

In the recent decades, numerous computational approaches
have been developed to describe the solid-state phase
transformation kinetics. Yamamoto et al. [21] described the
mechanism of reducing residual stress (LTT weld) by simulation
and measurement. The studies of Murakawa et al. [3,8] showed
that the compressive residual stresses primarily depended on the
transformation temperature range. Our previous study indicated
that the higher Ms temperature introduces tensile stress in the
weld zone due to uninterrupted cooling shrinkage, and the interpass
temperature has a great effect on the state of the RS in the
multi-pass LTT alloy welds [22]. If the inter-pass temperature is
lower than Ms, the longitudinal tensile stress is generated in the
weld except the last weld due to the tempering effect. If inter-pass
temperature is higher than Ms, the whole weld bead is entirely in
compression.

Conclusion

It has been widely recognized that the low temperature phase
transformation has a significant effect on the evolution of residual
stress; the LTT ‘smart’ alloy utilizes this effect to mitigate the tensile
residual stress. The application of LTT alloy effectively improves the
state of residual stress in high strength alloy steel. The LTT alloy
is still at the stage of development, a large number of practical
problems need to be solved, such as material mismatches and
mechanical performance requirements.
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