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Introduction

We are witnesses to the third industrial revolution that began 
with the creation of 3D printers at the beginning of the 80’s which is 
about to change standards in transplantology and leave its mark on 
bone grafting- the second most frequent worldwide type of tissue 
transplant after blood transfusion [1,2].

Currently the autograft is the “gold standard” for bone grafts 
but there are a number of complications that are related to the 
donor site of bone autografts, including arteriovenous fistula, 
urethral damage, massive blood loss, deep infection, chronic pain, 
and abdominal hernia [3-5].

An alternative to bone autografts are bone allograft. They 
are distributed through regional tissue banks and hospital banks 
but the mandatory quality control of the banked bone- one an 
undisputed advantage- makes the procedure more expensive [6,7].

Along with the use of allograft and autografts, the number of 
bone substitutes increases- especially in traumatology, revision 
prosthetic surgery and spine surgery [8-10]. Brydone noted that 
around 4,000,000 operations involving bone grafting and bone 
substitutes are performed around the world annually [11].

Kinaci research tendencies in using bone grafts among more 
than 2 million patients between 1992 and 2007 in the USA, as they 
found a slight increase in the use of bone substitutes than bone 
allograft [12]. Trabecular bone is the most commonly used form of 
autologous bone grafting because it has good osteogenic potential 
and large surface which helps revascularization and incorporation 
at the recipient site [13].

The creation of a scaffold of a trabecular bone through 3D 
printing is an attractive goal but not every three dimensional lattice 
could perform the function of autologous bone graft. According to 
Hollister at al. approaches in scaffold design must be able to create 
hierarchical porous structures to attain desired mechanical function 
and mass transport properties, and to produce these structures 
within arbitrary and complex three-dimensional anatomical shapes 
[14].

The trabecular bone is anisotropic material which has a 
hierarchical porous structure with five levels of hierarchical  

 
organization: mineralized collagen fibril, single lamella, single 
trabecula, trabecular bone, whole bone [15].

Because of this reason, the creation of substitute bone graft 
should be preceded by the creation of a mathematical model of 
human trabecular bone to analyze its structure. The beginning is 
when Hamed used bone samples extracted from proximal tibia 
(near knee joint) of an 88-year-old male. Although this research sets 
a framework for multiscale modelling of materials with hierarchical 
structures, the use of bone samples from a larger group of people 
in different age and different bone density it is still necessary [16].

The bone consists of organic phase, inorganic phase and 
water. The organic phase is composed of collagen type and 
non-collagenous proteins. The inorganic (mineral) phase is 
made of calcium phosphate, which is similar to hydroxyapatite: 
Ca10(PO4)6(OH)2 [17]. To create bone graft substitutes, various 
synthetic materials are used: metals, polymers- polylactides, 
polyglycolides, polyurethanes, or polycaprolactones; and ceramics- 
silicate based glasses, calcium sulfate hemihydrate and dehydrate 
and calcium phosphates that are among the most attractive [18].

Currently two phase implants of calcium phosphate and type 
I collagen have been created using two technologies of additive 
manufacturing- inkjet 3D printing and low temperature additive 
manufacturing [19-21]. The thickness of the building layers and 
the geometry of the structures in no way bring them closer to the 
parameters of the trabecular bone. However, it is encouraging that 
the authors report good osteoconductivity of the implants and 
preservation of the natural properties of the biomaterials used. 
Undoubtedly, 3D printing is linked to the future of bone grafts 
because it will be able to create “personal graft on demand”, but at 
this stage creating a trabecular bone structure remains a challenge 
to additive manufacturing technology.
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