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Abstract 

This paper is concerned with inverse transient thermoelastic problem of semi-infinite hollow cylinder in which we need to determine the temperature distribution, unknown temperature gradient, displacement function and thermal stresses when the boundary conditions are known. Integral transform techniques are used to obtain the solution of the problem. The results are obtained in terms of Bessel's function in the form of infinite series.
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Introduction

In 1962, Nowacki [1] has published a book on thermoelasticity. Sierakowski & Sun [2] studied the direct problems of an exact solution to the elastic deformation of finite length hollow cylinder In 2009, Kamdi et al. [3] studied transient thermoelastic problem for a circular solid cylinder with radiation. Walde & Khobragade [4] discussed transient thermoelastic problem of a finite length hollow cylinder. Khobragade et al. [5] derived thermal stresses of a finite length hollow cylinder. Warbhe & Khobragade [6] discussed numerical study of transient thermoelastic problem of a finite length hollow cylinder. Lamba & Khobragade [7] studied analysis of coupled thermal stresses in axisymmetric hollow cylinder. Hiranwar & Khobragade [8] studied thermoelastic problem of a cylinder with internal heat sources. Bagde & Khobragade [9] discussed heat conduction problem for a finite elliptic cylinder.

Khobragade et al. [10] investigated thermal deflection of a finite length hollow cylinder due to heat generation. Khobragade [11] studied thermoelastic analysis of a thick hollow cylinder with radiation conditions. Ghume et al. [12] derived interior thermo elastic solution of a hollow cylinder. Chauthale et al. [13] studied thermal stress analysis of a thick hollow cylinder. Singru & Khobragade [14] developed integral transform methods for inverse problem of heat conduction with known boundary of semi-infinite hollow cylinder and its stresses. Fule et al. [15] derived thermal stresses of semi-infinite hollow cylinder with internal heat source. Ghaleb et al. [16] studied a problem of plane, uncoupled linear thermoelasticity for an infinite, elliptical cylinder by a Boundary
Integral Method. Dhaba et al. [17] discussed deformation for a rectangle by a finite Fourier transform. Dhaba & Abou-Dina [18] derived thermal stresses induced by a variable heat source in a rectangle and variable pressure at its boundary by finite Fourier transform. In this paper, an attempt has been made to solve two inverse problems of thermoelasticity. In both the problems, an attempt has been made to determine the temperature distribution, unknown temperature gradient, displacement function and thermal stresses on outer curved surface of semi-infinite hollow cylinder.



Statement of the Problem-I

Consider semi-infinite hollow cylinder occupying the space D: ≤a r ≤b, 0≤z≤ ∞ The thermoelastic displacement function as [1] is governed by the Poisson's equation
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v and at are the Poisson's ratio and the linear coefficient of thermal expansion of the material of the cylinder and T is the temperature of the cylinder satisfying the differential equation
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where p1 and p0 are the surface pressures assumed to be uniform over the boundaries of the cylinder. The stress functions are expressed in terms of the displacement components by the following relations:
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where [image: ] is Lame’s constant, G is the shear modulus and U and W are the displacement components. Equations (4.1) to (4.19) constitute the mathematical formulation of the problem under consideration.


Solution of the Problem

Applying Fourier cosine transform to the equations (4.3), (4.4), (4.5), (4.6), (4.9) and using the conditions (4.7), (4.8) one obtains
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Where A, B are constants and I0, K0 are modified Bessel’s functions of first and second kind of order zero respectively.
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Where λm are the positive roots of the transcendental equation
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Using the contour of Figure 1,
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Figure 1:  



The integral (3.18) is equal to 2πi times the sum of the residues at the poles of the integrand.

[image: ]

[image: ]

Where m,n are positive integers

Applying inverse Laplace transform and then inverse Fourier cosine transform to the equation (5.15) one obtains the expression for unknown temperature gradient g(z,t) as
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Determination of Thermoelastic Displacement

Substituting the value of temperature distribution T(r,z,t) from equation (5.24) in equation (5.1), one obtains the thermoelastic displacement function ϕ(r, z, t) as
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Determination of Stress Functions

Using the values of radial and axial displacement from equations (6.2) and (6.3) respectively in equations (4.16), (4.17), (4.18) and (2.19), the stress functions are obtained as
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Special Case
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Numerical Results
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as [3] in equation (9.4) one obtains (Figure 2)
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Figure 2:   Graph of unknown temperature gradient (7.1) vs radius.
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Statement of the Problem-II

Consider semi-infinite hollow cylinder occupying the space D: a≤r≤b, 0≤z≤ . The thermoelastic displacement function as [1] is governed by the Poisson's equation
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The equation (11.6) is a Bessel's equation whose solution gives

v and at are the Poisson's ratio and the linear coefficient of thermal expansion of the material of the cylinder and T is the temperature of the cylinder satisfying the differential equation
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where k is the thermal diffusivity of the material of the cylinder.

The radial and axial displacement U and W satisfying the uncoupled thermoelastic equations as [2] are
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Where p1 and p0 are the surface pressures assumed to be uniform over the boundaries of the cylinder. The stress functions are expressed in terms of the displacement components by the following relations:
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Where [image: ]is Lame's constant, G is the shear modulus and U and W are the displacement components. Equations (10.1) to (10.19) constitute the mathematical formulation of the problem under consideration.

Solution of the Problem

Applying Fourier cosine transform to the equations (10.3), (10.4), (10.5), (10.6), (10.9) and using equations (10.7), (10.8) one obtains
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Where A, B are constants and I0, K0 are modified Bessel's functions of first and second kind of order zero respectively.

Using equations (11.8) and (11.10) in equation (11.11) we get
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Applying Inverse Laplace transform and inverse Fourier cosine transform to the equation (11.14) and using equation (10.6) one obtain the expressions for the temperature distribution T(r,z,t)
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Determination of Thermoelastic Displacement Function

Substituting the value of temperature distribution T(r,z,t) from equation (11.14) in equation (10.1), one obtains the expression for thermoelastic displacement function ϕ(r, z,t) as
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Using the value of thermoelastic displacement function ϕ(r, z,t) from equation (12.1) in equations (10.12) and (10.13) one obtains the radial and axial displacement U and W as
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Determination of Stress Functions

Using the values of radial and axial displacement U and W from equations (12.2) and (12.3) in equations (10.16), (10.17), (10.18) and (10.19), the stress functions are obtained as
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Special Case
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Figure 3:  Graph of unknown temperature gradient (13.1) vs radius.
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Conclusion

In this section, we derived the expressions of temperature distribution, unknown temperature gradient, displacement function and thermal stresses of semi-infinite hollow cylinder on outer curved surface, when the boundary conditions are known. The Fourier cosine transform and Laplace transform techniques are used to obtain the numerical results. The solutions are obtained in terms of Bessel's function in the form of infinite series and depicted graphically. The behaviors of graphs are of sinusoidal nature. The results that are obtained can be applied to the design of useful structures or machines in engineering applications. Any particular case of special interest can be derived by assigning suitable values to the parameters and functions in the expressions.
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