ISSN 2637-773X

Mini Review

Ethnic Differences in Genetic Immunity to Cancer

Rumyantsev SN*

Department of Evolutionary Immunology, USA

*Corresponding author: Rumyantsev SN, Department of Evolutionary Immunology, USA

Submission:

☐ January 19, 2019; Published:
☐ January 28, 2019

Abstract

Main goal of this article is to present more exhaustive information about genetic immunity to cancerous disease. The data about the subsistence of the disease in 125 ethnoses around the World have been analyzed. The groups of most immune and most susceptible ethnoses have been revealed. Causative agent of this disease is a specific eukaryotic genomic parasite, spreading amongst humans via its intrusion in the genomes of susceptible organisms. The Intrusion of cancerous genes is performing by contaminated human gametes, either by the sperm or by the egg. The parasite subsistence of human cancerous disease is functioning at the expense of substances and functions derived from the body of its prey. This trait is cruial for the progression of cancerous disease within a human body but intensive nutrition of developed cancerous tissues leads contaminated person to the loss of his body weight. The subsistence is provided with the possession by cancerous subjects of genetic immunity to the victim's immune defense and cell regulation. These new notions provide framework and landmarks for the detection and discovery of genomic roots of cancerous disease and encourage new proposals for its healing and prevention, as well as for the discovery of the origin and evolution of cancerous disease.

Keywords: Cancerous disease; Cancerous tissues; Cancerous gametes; Cancerous genealogy; Cell regulation; Embryogenesis; Eukaryotic parasite; Genetic immunity; Genome intrusion; Genomic parasite; Femai cancerous gamete; Healing of cancerous disease; Immune response; Mail cancerous gamete; Parasite invasion of a genome; Ovum; Prevention of cancerous disease; Self-procurement of cancerous disease; Selfish genes; Sexual transmission of cancerous disease; Sperm; Xenogamy

Introduction

For many decades the ability of cancer to invade human body and subsist in it like a parasite was out of the main stream of the discoveries of the biology, epidemiology, genetics, immunology and pathogenesis of this disease. The ability to withstand the invasion by the means of immunity has been neglected too. The first evidences of genetic immunity against cancer have been received thank to pioneering both families and genealogical observations, that have been made at the beginning of XX Century. Warthin [1,2]. Unfortunately, these first evidences have been neglected and forgotten. Most recent data of genetic immunity against cancerous disease are presented. Main goal of this article is to present recent information about genetic immunity to cancer. ethnic differences in susceptibility to cancerous disease. The data about the subsistence of the disease in 125 ethnoses around the World have been analyzed.

Materials and Methods

Main point has been made on the discovery of ethnic differences in native immunity to cancer. The data base of 1999-2007 Cancer Incidence and Mortality Data 2007 [3]. National Program of Cancer Registries. Betesda, Maryland: USA CDC has been used. The data about the subsistence of the disease in 125 ethnoses around the World have been analyzed.

Results and Discussion

The differences amongst 125 observed ethnic populations have been analyzed. Two main groups of populations have been

revealed: the group of most immune populations and the group of most susceptible populations.

a) Most immune populations (Index of Mortality < 100)

Table 1:

African Populations				
Niger	63.42	Liberia	89.21	
Benin	64.3	Guinea	90.02	
Gambia	68.24	Gabon	90.15	
Cape Verde	74.88	Sudan	91.1	
Namibia	82.66	Togo	91.14	
Guinea Bissau	83.05	Ghana	91.66	
Mauritania	85.66	Sierra Leone	92.27	
Chad	88.11	Central African Republic	92.86	
Congo	88.18	Western Sahara	97.22	
Burkina Faso	88.2	Cameroon	97.56	
Maldives	88.93	Nigeria	100.13	
Cote d Ivoire	88.96	Angola	100.81	
		Senegal	101.21	

Nov Appro in Can Study Copyright © Rumyantsev SN

Table 2:

West Asian Populations			
Yemen	80.36		
Oman	82.05		
Saudy Arabia	91.06		

Table 3:

Central Asian Populations			
Nepal	85.18		
India	93.96		
Shree Lanka	94.83		
Uzbekistan	99.7		

Table 4:

Less immune populations			
Erithrea	101.7		
Kuwait	102.12		
Ethiopia	108.03		

b) Most susceptible populations

Table 5:

Populations of West European Origin				
Belarus	218.6	Slovakia	276.95	
Romania	224.2	Italy	278.61	
Poland	229.59	Germany	283.84	
Bulgaria	234.8	Iceland	284.35	
Portugal	246.21	Hungary	285.39	
Lithuania	251.87	Lichtenstein	286.97	
Austria	254.09	Switzerland	286.97	
Sweden	269.9	Czech Republic	293.83	
Italy	278.1	Belgium	321.05	
Germany	283.84	Norway	318.29	
Switzerland	286.97	Ireland	307.91	
Lichtenstein	286.97	Netherlands	304.8	
Hungary	285.39	France	303.54	
Iceland	284.35	Denmark	338.09	

England	292.59	Portugal	246.21
Chech Republic	293.83	Latvia	246.77
Estonia	242.84	Spain	249.45
Macedonia	239.27	Lithuania	251.87
Montenegro	238.25	Austria	254.09
Bulgaria	234.8	Croatia	266.86
Poland	229.59	Serbia	269.74
Montenegro	238.25	Sweden	269.99
Macedonia	239.27	Estonia	242.84
Populations of Native Australians	397.44		
Tasmanian population	493 98		

c) Less susceptible populations

Table 6:

Russia	204.3	Armenia	257.02
Turkey	205.08	New Zealand	295.02
Brazil	205.48	Canada	295.72
Argentina	216.68	New Caledonia	297.91
Japan	217.11	Korean Republic	307.77
Kazakhstan	236.48	USA	317.97
		Current Australians	322.98

d) South east Asian populations

Table 7:

Melanesian populations					
Vanuatu	107.76	Thailand	137.48		
Solomon Islands	116.34	Indonesia	133.52		
Philippines	139.98	Lao PDR	143.83		
Vietnam	140.41				
N	North African populations				
Tunisia	110.57	Papua New Guinea	165.23		
Mali	111.42	China	173.97		
Morocco	117.84	Korean Dem Re- public	181.19		
Algeria	123.49	Libya	124.12		
11. Egypt	152.04				

Volume 2 - Issue - 2

South American Populations				
Nicaragua	114.42	Belize	160.69	
Mexico	131.54	Bolivia	143.39	
Honduras	131.25	Paraguay	147.77	
Guatemala	130.39	Venezuela	150.03	
Panama	148.44	Peru	154.52	
Costa Rica	149.73	Suriname	159.64	
Dominican Republic	153.41	Colombia	160.63	
Guyana	165.934	French Guyana	160.88	
Chile	175.69	Ecuador	164.45	
Central Asian Populations		Near East Populations		
Bangladesh	104.45	Azerbaijan	141.94	
Pakistan	111.82	Syrian Arab Re- public	145.91	
Afghanistan	115.23	Jordan	155.4	
Iran	127.69	Georgia	181.04	
Kyrgyzstan	137.65	Greece	163	

The data, that have been presented and analyzed above, are in quied accordance with the theory of invasive origin and parasite subsistence of human cancer [4]. According to data of evolutionary epidemiology, genetic immunity to infectious diseases is elaborated firstly in populations, that had more ancient confrontation with relevant epidemics. Analogous correlations are seen also in the case of genetic immunity to cancer. The above presented data are evidenced, that pandemics of cancerous disease started firstly amongst the populations of West Africa, Abyssinia and India. Most

susceptible populations (west Europeans, Australian aborigines and Tasmanians) met the pandemics of cancer far later.

Conclusion

The differences amongst 125 observed ethnic populations have been analyzed. Two main groups of populations have been revealed: the group of most immune populations and the group of most susceptible populations. These new data have allowed us to conclude that revealed differences are of genetic i.e. of evolutionary origin, compatible to those ones, that have been discovered in the area of genetic immunity against infectious diseases. The above new notions provide framework and landmarks for the detection and discovery of genomic roots of cancer and encourage new proposals for its healing and prevention, as well as for the discovery of the origin and evolution of cancerous disease, as well as of its impact on both ancient and future evolution of humankind [5,6].

References

- Warthin AS (1913) Hereditary with reference to carcinoma as shown by the study of the cases examined in the pathological laboratory of the university of michigan, 1895-1913. Archives of Internal Medicine 12(5): 546-555.
- Warthin AS (1925) The further study of a cancer family. J Cancer Research 9(2): 279-286.
- 3. Hauser J, Weller CV (1936) A further report on the cancer family of warthin. Am J Cancer 27(3): 434-450.
- 4. 1999-2007 Cancer Incidence and Mortality Data (2007) National program of cancer registries. Betesda, Maryland, USA CDC.
- 5. Rumyantsev SN (2018) Parasite subsistence of human cancer. Novel Approaches in Cancer 1(2): 1-15.
- Rumyantsev SN (2008) Hereditary immunity: fundamental principles and exploitation in life study and health care. Nova Science Publishers, New York, USA, pp. 81-102.

For possible submissions Click Here

Novel Approaches in Cancer Study

Benefits of Publishing with us

- High-level peer review and editorial services
- Freely accessible online immediately upon publication
- Authors retain the copyright to their work
- Licensing it under a Creative Commons license
- Visibility through different online platforms