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Alterations of Mitochondrial Functions and 
DNA in Diabetic Cardiomyopathy of CCK1 

Receptors-Deficient Rats

Introduction
Diabetes mellitus is a complicated, chronic disorder 

characterized by either insufficient insulin production by pancreatic 
β-cells or by cellular resistance to insulin. Oxidative stress has been 
suggested as a contributory factor in the pathogenesis of diabetes 
[1].

Type 2 diabetes mellitus (T2DM) is a metabolic disease 
characterized by elevation of blood glucose concentration, lipid 
abnormalities and vascular complications. Insulin resistance and 
pancreatic β-cell insufficiency with respect to insulin production 
are major features in the progression of T2DM [2,3]. Obesity is 
defined as excess body fat, determined by a surrogate measure 
called body mass index (BMI), defined as weight in kilograms over 
height in meters squared. Abdominal obesity due to excess visceral  

 
fat is associated with an increased risk of developing cardiovascular 
disease [4]. Moreover, excess visceral fat is linked to an increased 
risk of metabolic syndrome, which includes a greater risk of 
developing type 2 diabetes mellitus (NHLB, 2006) associated with 
cardio-metabolic disorders [5].

Today, over 95% of all diabetes is type 2 and it occurs in children 
and adolescents as well as adults. In an individual with a BMI of 30, 
the risk of diabetes type 2 is increased 60- to 80-fold in comparison 
to lean individuals. Meanwhile, the risk for heart disease is only 4-to 
6-fold increased at a BMI of 30. The association of diabetes type 2 
with obesity goes beyond typical risk factors and justifies naming 
the disease diabesity. However, insulin treatment failed to reduce 
cardiovascular mortality [6]. Several lines of evidence implicate 
mitochondrial defects as a major factor in diabetes mellitus [7]. 
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Abstract

Many data has accumulated supporting the involvement of oxidative stress in the development of diabetic cardiomyopathy. The current study was 
carried out to investigate the effect of diabetic oxidative stress on cardiac mitochondrial functions to figure out potential biomarkers and therapeutic 
targets for early diagnosis and treatment of diabetic cardiomyopathy. For this purpose, a total number of 18 male Otsuka Long-Evans Tokushima Fatty 
(OLETF) rats as diabetic group and age-matched Long–Evans Tokushima Otsuka (LETO) as control group were used in the present study.

Rats (both LETO and OLETF) were anesthetized and thoracotomy was performed, and hearts were per-fused. Furthermore, for mitochondrial 
isolation 12 hearts were used (6 for flow cytometry and another 6 for measurement of oxygen consumption). Additionally, to carry out DNA fragmentation 
assay and 8-OHdG measurement, 6 hearts were used for mitochondrial DNA extraction.

The obtained findings can be summarized in that electron microscopy of mitochondria from diabetic OLETF hearts revealed increases in both size 
and number. Moreover, mitochondrial DNA fragmentation percentage and oxidized mitochondrial DNA were higher in diabetic hearts when compared 
with control group, and demonstrated impaired mitochondrial function in diabetic group. In addition, data showed decrease in ETC respiration as 
measured by the alteration in respiratory control ratio (RCR) of diabetic OLETF heart mitochondria. It can be concluded that mitochondrial ROS are 
involved in the progression of diabetic cardiomyopathy. This can be explained in the light of the progression of mitochondrial dysfunction and increasing 
level of oxidative stress during diabetes in cardiac tissue.
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Diabetes mellitus has been proposed to result from defects in the 
glucose sensor for insulin secretion [8], insulin resistance [9], and 
from defective modulation of the β-cell KATP channels [10]. All these 
three factors can be tied together through mitochondrial energy 
production.

Furthermore, type II diabetes patients consistently show a 
down-regulation in the expression of nDNA encoded mitochondrial 
genes, in association with alterations in the levels of the peroxisome-
proliferation-activated receptor-γ (PPARγ)-coactivator 1 (PGC-
1) [11], a major regulator of mitochondrial biogenesis and fat 
oxidation [12].

Diabetes mellitus is also seen in Friedreich ataxia as the 
result of inactivation of the frataxin gene. Frataxin binds iron in 
the mitochondrial matrix, thus minimizing mitochondrial •OH 
production. The loss of the frataxin protein results in excessive 
ROS generation which inactivates all mitochondrial iron-sulfur-
containing enzymes. Thus increased mitochondrial ROS production 
and decreased mitochondrial OXPHOS must be the cause of diabetes 
in Friedreich ataxia [13]. The importance of mitochondrial defects 
in β-cell insulin secretion deficiency has been confirmed in two 
mouse models. In the first, the mitochondrial transcription factor 
T-fam was inactivated in the pancreatic β-cells. This resulted in 
increased blood glucose and the progressive decline in β-cell mass 
by apoptosis [14]. In the second, the ATP-dependent K+- channel 
(KATP) affinity for ATP was reduced, resulting in a severe reduction 
in serum insulin, severe hyperglycemia with hypoinsulinemia, and 
elevated 3-hydroxybutyrate levels [10]. These models demonstrate 
that mitochondrial ATP production is critical in the signaling system 
of the β-cell to permit insulin release [15].

The aim of this study is to investigate the cardiac mitochondrial 
functions in relation to diabetic oxidative stress of knockout obese 
rats. This may help to discover novel biomarkers and to identify 
new therapeutic targets for diabetic cardiomyopathy.

Materials and Methods

Experimental animals
Nine male Otsuka Long-Evans Tokushima Fatty (OLETF) rats of 

8 weeks age and nine age-matched Long–Evans Tokushima Otsuka 
(LETO) rats were obtained from the Animal Center of Tokushima 
Research Institute (Otsuka Pharmaceutical, Tokushima, Japan) 
and maintained until they reached an appropriate age for the 
experiment. OLETF rats lacking CCK1 receptors are hyperphagic 
following weaning and become obese. OLETF rats have impaired 
glucose tolerance by 5 weeks of age after that the degree of glucose 
intolerance increases and became clearly hyperglycemic and 
hyperinsulinemic (i.e. develop type 2 diabetes). All rats had free 
access to standard laboratory chow and tap water, and were taken 
care of under the specifications outlined in the Guiding Principles 
for the Care and Use of Laboratory Animals—Approved by the 
Institutional Animal Care and Use Committee of Inje University.

 All investigations were performed according to the “NIH Guide 
for the Care and Use of Laboratory Animals” (National Institutes 

of Health Publication No. 85-23, Revised 1996) and approved by 
the Institutional Animal Care and Use Committee of Inje University 
College of Medicine, Korea.

Experimental design
Thirty-five weeks old male OLETF rats (696±52g) used as 

diabetic group and 35 weeks old male LETO rats (480±26g) used 
as control. Three rats from each group were used for mitochondrial 
DNA extraction and 6 rats from each group were used for 
mitochondrial isolation.

Sampling: At 35 weeks of age all animals were sacrificed under 
sodium pentobarbital (80mg/kg, i.p.) anesthesia and heparin 
sodium (500IU/kg. i.p.) as anticoagulant and heart and thoracic 
aorta were dissected out.

Electron microscopy: The morphology of the mitochondria 
was assessed using an electron microscope (JEOL 1200 EX2, Japan). 
The procedures were done according to the method of Rajapakse 
et al, [16]. In brief, samples were fixed in 2.5% glutaraldehyde then 
washed three times for 10 min each with 0.1M Millonig phosphate 
buffer, followed by post-fixation for 1 h in 2% (w/v) osmium 
tetroxide. Samples were then washed 3 times for 10 minutes each 
with buffer followed by dehydration in a graded series of ethanol 
solutions (25%, 50%, 85%, 95%, and 100%) for 10min each. 
Samples were further dehydrated twice for 10 minutes each in 
propylene oxide and infiltrated for 2h in a 1:1 mixture of propylene 
oxide and purr-resin, then overnight in a 1:2 mixture of propylene 
oxide and purr-resin. Finally, the samples were infiltrated in pure 
purr-resin for 6h before embedding and curing at 70 ⁰C overnight. 
Electron microscopy was performed using a JEOL 1200 EX2, Japan 
transmission electron microscope.

Flow cytometry of mitochondrial superoxide: Double 
staining of mitochondria was performed according to Spallarossa et 
al. [17]. For evaluation of mitochondrial ROS production, we loaded 
the isolated heart mitochondria with the fluorescent probes H2DCF-
DA and Mito-Tracker Red CM-H2XRos, respectively. Briefly, six 
isolated rat hearts from each group (both LETO and OLETF) were 
manually homogenized, using medium fitting glass-teflon Potter-
Elvehjem homogenizer in mitochondrial isolation buffer (MIB). 
The resultant homogenate was centrifuged at 1500xg for 5minutes 
at 4 ⁰C. The supernatant was centrifuged again at 10,000xg for 
10minutes and the mitochondria-enriched pellet was resuspended 
in mitochondrial isolation buffer. Mitochondria were labeled 
by the addition of Mito-Tracker Red CMXRos to the suspended 
mitochondrial pellet (100nM final concentration; Molecular Probes, 
Eugene, OR) and H2DCF-DA was added to final concentration of 
5µM according to manufacturer’s recommendation. The mixture 
was incubated for 10min in the dark at room temperature, and 
then fluorescence was measured by flow cytometry analysis with a 
FACS-SCAN apparatus (FACSCalibur; BD Biosciences, USA).

Mitochondrial DNA fragmentation assay: The DNA 
fragmentation assay was performed according to the method of 
Herrmann et al. [18]. Mitochondrial DNA isolation was performed 
as described by Rudolf et al. [19] using mtDNA Extractor CT Kit. In 
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brief, 50mg of minced cardiac tissue from six isolated hearts from 
each group (both LETO and OLETF) were homogenized with scissors 
in 1mL of the homogenizing buffer with a glass homogenizer by up-
and down of the pestle on ice until the pestle reaches the bottom 
of the glass well. The homogenate was centrifuged at 1000xg for 
1 minute at 4 ⁰C. The supernatant was recentrifuged at 10000xg 
for 10 minutes at 4 ⁰C. DNA extraction solution I was added to the 
precipitate and kept on ice for 5 minutes. DNA extraction solution 
II was added and kept on ice for 5 minutes. Cold DNA extraction 
solution III was added then kept on ice for 5 minutes. Centrifugation 
was performed at 12000xg for 5 minutes at 4 ⁰C. Supernatant was 
transferred to new microtube then sodium iodide solution was 
added. Isopropanol was added then centrifugation was performed 
at 12000xg for 10 minutes at room temperature. The precipitate 
was washed using washing solution then centrifugation was 
applied at 12000 xg for 5 minutes at room temperature and this 
step was repeated twice. The pellet was dried under vacuum and 
then re-suspended in TE buffer (pH 8.0). The mitochondrial DNA 
quantity and purity were assessed spectrophotometrically using 
NanoDrop-1000 spectrophotometer and ND-1000 software. 
Agarose gel electrophoresis (1.5%) of mtDNA was performed as 
described by Sambrook & Russel [20].

8-hydroxy-2’-deoxy-guanosine measurement
Competitive ELISA assay for 8-OHdG was performed according 

to Schmerold & Niedermüller [21] using 8-OHdG-EIA kit (OXFORD, 
USA). Briefly, mitochondrial DNA was isolated from heart tissues 
using mtDNA Extractor CT Kit (Wako, USA) then 8-OHdG antibody 
and DNA sample were added to ELISA plate which has been 
precoated with 8-OHdG. The 8-OHdG in the sample competes with 
the 8-OHdG bound on the plate for the 8-OHdG antibody bites 
binding sties. The antibodies that are bound to the 8-OHdG in the 
sample were washed out of the well, while those that have bound 
to the 8-OHdG coated on the plate will remain. Following secondary 

antibody and chromogen, the color reaction was terminated and 
the absorbance was measured.

Mitochondrial Oxygen Consumption
The experimental procedures described are based on 

polarographic measurements of oxygen consumption by means of 
Clark-type oxygen electrode. For mitochondria studies the rate at 
which total chamber oxygen declines is referred to as the oxygen 
consumption rate [1].

Heart mitochondria were prepared by differential centrifugation 
using 250mM mannitol, 5 mM Na–HEPES (pH 7.0) and 0.5mM EGTA 
as the isolation medium [22]. Then, mitochondrial respiration was 
measured with a Clark-type oxygen electrode (Instech Laboratories 
Inc, Plymouth Meeting, Pa). Six isolated rat hearts from each group 
(both LETO and OLETF) were manually homogenized, using medium 
fitting glass-teflon Potter-Elvehjem homogenizer in isolation 
medium. The resultant homogenate was centrifuged twice and 
the mitochondria-enriched pellet was resuspended in respiration 
buffer (225 mM mannitol, 70mM sucrose, 10mM KH2PO4, and 1mM 
EGTA, pH 7.2). Oxygen consumption was measured in the presence 
of sequential administration of substrates (glutamate/malate 
for complex I, succinate for complex II, ascorbate for complex IV) 
was added in the following order and final concentration: 2.5mM 
glutamate, 2.5mM malate, 2mM adenosine diphosphate, 5mM 
succinate, and 1mM ascorbate. State (3) respiration was initiated 
by the addition of an excess of ADP (2mM). Respiration rates were 
expressed as micromoles of oxygen per minute per milligram of 
mitochondrial protein. Mitochondrial protein was determined 
according to the method of Lowry et al. [23]. Respiratory control 
ratio (RCR) was defined as the ratio of state 3 respiratory rate to 
state 4 rate. Isolation and assay of diabetic (OLETF) and control 
(LETO) mitochondria were always carried out at the same time as 
matched pairs.

Figure 1: a) Mitochondrial size in LTEO (29±1.5) and OLETF (38±2) hearts. b) Mitochondrial size in LETO (11±0.9) and OLETF 
(18±1.2) thoracic aorta. Mitochondrial area was measured as percentage of total area on transmission electron microscope (TEM) 
micrographs
Results are means from 6 micrographs for each heart and 6 rats for each group. * P<0.05 compared with LETO rats.

Statistical Analysis
All results are expressed as means ± standard error of mean 

(SEM). Statistical analysis was performed by one-way analysis of 
variance (ANOVA, SuperAnova, Abacus Concepts; Berkeley, CA, 
USA).  Differences between the control (LETO) and diabetes (OLETF) 
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groups were assessed using the Student’s t-test. Differences were 
considered significant at P < 0.05. 

Results and Discussion
As the primary source of energy for the cardiac myocyte, 

mitochondria play a central role in cellular homeostasis. Not 
surprisingly, disruption of this critical organelle is regarded as 
a key contributor to the development of pathological states, 
including diabetic cardiomyopathy [24]. Mitochondria also 
compartmentalize reactions and molecules critical for metabolism, 
signaling, and programmed cell death [25]. Mitochondria are also 
dynamic, frequently changing size and shape and traveling long 
distances on cytoskeletal tracks. Sophisticated mechanisms that 
regulate different morphologies and distributions help to optimize 
mitochondrial function in response to changing intracellular 
needs and extracellular cues [26]. A better understanding of 

the mechanisms by which cardiomyocytes undergo apoptosis 
following diabetic oxidative stress would be helpful and may also 
provides additional targets for therapeutic intervention in the 
treatment of diabetic cardiomyopathy in the future. The electron 
microscopic examination of mitochondria from diabetic OLETF 
hearts in the present study revealed increases in both size and 
number (Figures 1 & 2). Similar findings were obtained by Shen 
et al. [27] who observed mitochondrial swelling in the OVE26 
mouse model of diabetes, suggesting a compensatory mechanism 
against the enhanced apoptotic program. Moreover, Boudina et al. 
[28] demonstrated that diabetes and obesity are associated with 
mitochondrial proliferation in db/db heart without a coordinate 
increase in mitochondrial oxidative capacity and suggested that this 
mitochondrial biogenesis is an adaptive mechanism to overcome 
the decreased oxidative capacity.

Figure 2: a) Mitochondrial number in LTEO (21±1.6) and OLETF (32±1.2) hearts. b) Mitochondrial number in LETO (13±2) and 
OLETF (22±1.8) thoracic aorta. Mitochondrial number was counted and normalized to unit micrograph area. 
Results are means from 6 micrographs for each heart and 6 rats for each group. * P<0.05 compared with LETO rats.

Figure 3: Fluorescence-activated cell sorting (FACScan) analysis of mitochondrial superoxide production.
a)   Selection of mitochondria based on staining with Mito-Tracker Red and measurement of superoxide production based on the 
fluorescence of the oxidized H2DCF-DA by mitochondrial superoxide.
b)  Significant increase in mitochondrial superoxide production expressed as mean fluorescence intensity in OLETF (883±22) 
compared with LETO (256±19) heart mitochondria.
* P<0.05 compared with LETO rats. Vertical bars indicate SE.
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In the present study, the increased mitochondrial superoxide 
production in diabetic heart (Figure 3) coupled with increased 
mitochondrial DNA fragmentation and oxidation (Figures 4-6) 
imply that ROS defences in these diabetic hearts were not 
sufficiently increased to circumvent the increased oxidant burden.

Figure 4: The electrophoretic analysis of mtDNA from LETO 
and OLETF hearts is shown on a 1.5% agarose gel. Lane M, 
100 bp DNA Ladder. Lane 1&2, mtDNA of LETO hearts and 
lane 3&4, mtDNA of OLETF hearts. The mtDNA of OLETF 
hearts are more fragmented than those of LETO hearts.

Figure 5: The density (expressed as OD x mm2) of 
mitochondrial DNA fragments in OLETF (465±11) and 
LETO (158±8.5) hearts.
* Significant variation between OLETF and LETO groups at 
p < 0.05.

Mitochondria appear to be at the crux of diabetic cardiac 
hypertrophy [9]. During oxidative phosphorylation, oxygen is 
reduced to water in four electron reductions at cytochrome oxidase 
(complex IV) in the mitochondrial ETC. More than 90% of the 
body’s oxygen is consumed by the ETC [29]. It has been estimated 
that about 1–3% of the oxygen consumed in the mitochondria is 
released as superoxide and hydrogen peroxide (H2O2) at complexes 
I and III, making mitochondria a major source of endogenous 
reactive oxygen species (ROS) [30,31]. These ROS can damage 
macromolecules in mitochondria, including proteins, lipids, RNA, 
and DNA.

Figure 6: Mitochondrial DNA 8-OHdG content in LETO 
and OLETF hearts. The 8-OHdG level in the mtDNA of 
OLETF rat hearts (36.4±3.8) is significantly higher (2.9 fold 
increase) than that of control (LETO) hearts (12.5±2.1). 
Data are shown as means ± SEM. (n = 6).
* P<0.05 compared with LETO rats. Vertical bars indicate 
SE.

8-Hydroxy-2’-deoxyguanosine (8-OHdG) is one of the major 
products in oxidative DNA damage caused by reactive oxygen species 
[32]. The significant increase of 8-OHdG level in mitochondrial DNA 
of diabetic heart (Figure 6) indicated the oxidative damage of DNA 
leading to diabetic cardiomyopathy. This is where 8-OH-dG can be 
considered as a promutagenic lesion in DNA that is generated in 
response to a number of chemicals that induce oxidative stress [33] 
and it is widely used as a marker of oxidative injury [34].

Furthermore, Figures 4 & 5 showed that mitochondrial DNA is 
exhibited a maximal DNA fragmentation, a marker for apoptosis, 
in diabetic hearts when compared to control group. As mentioned 
by Sawyer & Van Houten [35] that in the last two decades, several 
studies have suggested that mtDNA is more susceptible than nuclear 
DNA to genotoxic agents, most notably ROS. This is augmented 
from the increased mitochondrial superoxide production (Figure 
3) which could result in increased mitochondrial DNA oxidation as 
shown in Figure 6. In this context, numerous studies measured the 
levels of 8-OH-dG, a common byproduct of oxidative stress, both in 
mitochondrial and nuclear DNA (nDNA). Early reports indicated 
that the mtDNA had higher amounts of oxidative damage than the 
nuclear genome. Damage to the mtDNA, if not repaired, could lead 
to mutations during replications. More importantly, it could have 
further implications in cell physiology and, ultimately, in human 
health [36].

Mitochondrial electron transport chain (ETC) function can be 
profoundly affected by oxidative stress-associated pathologies, 
including diabetes mellitus because of its enhanced propensity for 
ROS-mediated damage. Our current data showed decrease in ETC 
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respiration measured by the alteration in respiratory control ratio 
(RCR) in diabetic OLETF heart mitochondria (Figure 7), which is in 
agreement with other reports [37,38].

Figure 7: Impaired mitochondrial function in OLETF rat 
hearts. 
a) Mitochondrial oxygen consumption rate in LETO and 
OLETF.  b) Reduced respiratory control ratio in cardiac 
mitochondria from OLETF diabetic rats. Respiratory control 
ratio (RCR) was calculated as ratio of state 3 to state 4 rates.
All results were normalized to mitochondrial protein 
content. Results are means from 6 animals for each group.
* P<0.05 compared with LETO rats. Vertical bars indicate 
SE.

Given a mitochondrial etiology for type II diabetes, the various 
stages in the progression of type II diabetes can be understood. 
The excessive reduction of the mitochondrial ETC electron carriers 
in the energy utilization tissues maximizes mitochondrial ROS 
production. The high serum insulin activates their Akt pathway, 
which phosphorylates the FOXOs. The departure of the FOXOs 
from the nucleus stops transcription of the stress response genes, 
including the mitochondrial antioxidant enzymes. It also suppresses 
PGC-1α transcription, which down regulates mitochondrial 
OXPHOS, further exacerbating the mitochondrial energy deficiency. 
The resulting chronic mitochondrial oxidative stress erodes 
mitochondrial function and increases insulin resistance [15].

Moreover, our results are consistent with the recent findings 
reported by Dabkowski et al. [39] who observed significant 
decreases in oxygen consumption at complex I, III and complex IV 
in diabetic heart mitochondria. Furthermore, this is in agreement 
with previous reports of decreased respiration capacity in the 
diabetic heart mitochondria [40,41].

The impairment of cardiac mitochondrial function in OLETF 
rats in the current study is also consistent with the findings of 
[42-44] who demonstrated that cardiac mitochondria showed 
impairment in mitochondrial function and morphology, 
underscoring an important role for mitochondrial dysfunction in 
cardiac complications of diabetes.
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