
[image: cover]

[image:]

Anthropological Analysis of Technology Assets
Change Paradigm Support

Mordechai Ben Menachem*

Ben Gurion University, Beer-Sheva, Israel

*Corresponding author: : Mordechai Ben Menachem, Ben-Gurion University, Beer-Sheva, Israel, Email: quality@acm.org

Submission: [image:] Jan 30, 2018; Published: [image:] June 15, 2018

Abstract

Often the most fertile insights into contemporary problems come not from those in the mainstream but from the more adventurous spirits who have
charted their own intellectual course. Definition of anthropology: the science of human beings; especially: the study of human beings and their ancestors
through time and space and in relation to physical character, environmental and social relations, and culture. What are the anthropological aspects of
information and of software-the entity that controls information (at least, certain dimensions of control)? We know that software and information
are both notoriously difficult to manage well. What does that mean, why is it important, and what can be done about it? Much to the surprise of many
readers, these questions are life critical issues, for almost all of humanity.

Keywords: Information

Information Management Objectives, Including
Software

Information is data processed in such a manner such that it
becomes meaningful for the user (consumer) of that information.
Namely, data organised for semantic association. This is particularly
true of “information about information” (“meta-information”).
Software is a form of information; what we are talking about is
information used to describe software. The IS' role is to capture
data, organise by semantic association and allow meaningful uses
via expressive queries. In addition, IS' are most successful when
the data has human-imposed structure. Relational systems provide
powerful tools because they supply “ human ” constraints, helping
users fit it to the application domain. There exists the counter
example of the world-wide-web (totally devoid of structure).
However, this is not a refutation because hyperlinks are not a
coherent information domain (which is exactly its strength, it is not
meant to be one information system).

The spectacular advances in information-processing
capabilities have generated many paradoxes. Three good examples
are the following:(Table 1).

Table 1:
 Impossibilities.

[image:]

Increasingly, business executives have a need to better
align Information Technologies with business strategies, with
organisational change and with mergers and acquisition activities.
Information Technology has become inextricably woven into a
basic business fabric. Despite this, there is still an endemic lack
of organisational flexibility to take advantage of IT progress and
the same lack of flexibility in IT to continue to simulate rapidly
changing organisations. The lack of IT flexibility causes corporate
pain seemingly as large as the issues it resolves.

Business Management Objectives

One important and fundamental aspect of mergers and
acquisitions is a good match of the Corporations' Information
Systems. IT is very knowledgeable; storing knowledge of every
aspect of the business and relationships and enabling functional
management of every part of the organisation, except itself
(excepting IT). We still do not have high quality information systems
to manage the software that manages all the other information in
the business-a logical absurdity, but a fact of corporate life and a
critical twenty-first century human conundrum. We use Information
Systems to accurately manage assets of all functional activities
(i.e. manufacturing, account management, human resources,
marketing) but do not use IT to manage IT assets. For instance, until
quite recently, the only way computer systems could be inventoried
was by manual processes; so difficult and cumbersome as to border
on absurdity.

Enterprise Software consists of tens of thousands of files, many
with multiple objects and many with multiple uses. In one major
insurance company, it took three people almost two years to have
an inventory! We propose an automatic method to do so in weeks.
Not only is the manual process too onerous to be practical, but the
difficulty of auditing its' accuracy and keeping the inventory up-todate,
makes it virtually impossible to use with any real effect; there
can be no long-term use, as it is inevitably obsolete by the time it is
“ completed.” Certainly one would not expect to manage any other
type of asset without an inventory. By the way, average personnel
turnover is always too short for maximum effectiveness.

In another major insurance company, they were asked to assess
the number of files they store in their systems. The author was told:
“ We have between 35,000 and 45,000 files, but I do not know what
languages they are written in or who uses them.” Thirty-five to
forty-five thousand? That is the best guess they can come up with?
What other industry would tolerate that degree of incertitude?

[image:]

Figure 1: The Software Factory model.

Even having an inventory, this is only the first process towards the
end to achieve and we have already said that it is not trivial. Overall,
our objective is Management of all Information Processing Assets
in the Enterprise. We call this: “ Enterprise Resource Management”
(ERM). Clearly, this name is a “ take-off” on Enterprise Resource
Planning (ERP) which has become so prevalent in manufacturing
and service industries. However, just as ERP evolved over time from
islands of information through stages of MRP to where it is today, so
all ERM needs to evolve. The vast majority of corporations are still
at the stage equivalent to islands of information. Our objective is to
evolve IT in a similar manner, but much more quickly. We believe
that the technologies exist to allow this to happen. We believe
that the marketplace has a sufficient understanding of the issues
involved, thanks to Year 2000, to understand the needs(Figure 1).

Management Structures of Organisations

The type of organisation should (and usually does) determine
the way it is managed. The basic management model determines
information needs. Competition, external controls (e.g.,
government overseers) and vulnerabilities influence this greatly. In
examining successful organisations and attempting to predict what
contributes to future success, it is useful and interesting to examine
what different types of organisations need. It would be counter
productive to assume all organisations have identical needs or
characteristics.

Clearly, organisations' goals heavily influence needs. It becomes
increasing clear that a good product, an innovative strategy
and charisma are no longer sufficient. With increased product
technology sophistication, differences become muddled and prices
no longer control purchase decisions. Increasingly, large companies
have less of an inherent advantage over small ones (or visa-versa).
Less of an advantage-not no advantage. Size still counts, just
differently. Where advantage lies is not a large or small company, but
a great one or “ another” one. Customer's decisions are influenced:

A.	Not by price but long-term costs

B.	What really matters is not this sale but how you ensure a
long-term relationship between your staff and the client's staff
(i.e.,) the next sale, and the ones after that

C.	 Not by “ we try harder” but “ we solve YOUR problem”

D.	 What really matters is not what you have done, but what
have you done for me lately. (Not nice, only true.) Customer
loyalty just does not last as it used to

E.	Not by what you make but what you stand for

F.	Product and business cycles are getting too short for
this to matter over the long-term. What really matters is your
identity and purpose

G.	The following shows organisation of these ideas. In each
case, the “ organisation” has orientation and ideas that match its
needs. Their standards activities are neither “ good” nor “ bad.”
They are simply what their needs reflect (Table 2).

Table 2:
 Organisations' information needs.

[image:]

The secret to survival is adaptation to change-notice, not
controlling change, but adapting. Change is inevitable controlling it
is nonsense. A great company learns how to constantly adapt itself
(i.e., re-invent itself!). Not only when a problem is recognised and
MUST be responded to, but constantly. Organisational adaptation
to change is an integral part of corporate culture. How can this
be accomplished (much less, managed) without a very powerful
information model? Remember that the information system reflects
the organisation. Information systems need to be “ infinitely”
adaptable to constant change. This is not possible unless the
Information Technology is managed. The degree and sophistication
of this management must be as high or higher than the organisation
as a whole.

Managing Enterprise Change

Change is the reality of business. Change is not something
that happens, it is something that is anticipated and brought
about in order to excel. Change may occur as a result of a merger,
an acquisition, deregulation, new market constraints, increased
or new customer focus, smart management, new technology,
operational changes renewing the IT function, outsourcing a
specific task etc. Whatever the reason, the process of change must
be carefully managed. Whether the organisation is a reflection of its
information system or the IS reflects the organisation, all indicators
show that this process will intensify. All organisations will be in a
state of constant renewal. The more successful companies will be
those that can renew themselves in unique, forceful and creative
ways. This includes structure, products and processes. This may
be reflected in corporate culture, technologies used or human
resources. Clearly, one of the more important aspects is how these
are integrated.

One example of this is Remote Access or Tele-Work. This enables
workers to access the corporate information Knowledge Base from
anywhere on the globe to find and interact with it and with clients.
As talent becomes more difficult to acquire, this is a prime business
enabler. In 1995, Eric Vogt [1] published a seminally visionary
article which envisioned employing “ nomadic knowledge workers.”
When, for example, graphic talent is needed, but the best person for
the job prefers to live and work far from the corporate scene, say
in a rain forest or desert should an outdated corporate structure,
based upon remains of an agrarian society, limit our ability to take
advantage of these needed talents? The answer should certainly be
negative. It means a new way of thinking about organisation; one
must control corporate information assets (Table 3).

Table 3:
 A System characteristics vs goals comparison.

[image:]

A Quality Environment

The reality is that software maintenance has been viewed
trivially, as a ” necessary evil” and not as standard operating
procedure. Software maintenance always exists. Software systems
are the oldest technological artefacts we deal with. It is not
uncommon for organisations to continue to maintain systems
developed several decades ago. It needs to be understood that
the people that wrote these systems did not think that they would
last more than a few years, if that. This is a major aspect of the
difficulties surrounding software maintenance. The way to constant
improvement is straightforward. Constant improvement is a
question of the right methodology, applied with the right discipline,
at the right time and by the right people, consistently.

Development is never simple and maintenance can be even
more difficult. Procedures are divided into two classifications:
“ Operational Procedures” (for such issues as plans and control) and
“ Technical Procedures” (for such issues as defining requirements,
specifying design and testing). Many procedures can be software
supported to help the process be performed more smoothly.

The farthest-reaching difference perhaps concerns systems'
requirements. Requirements acquisition and management should
be an enterprise-level function. In most cases, it is not, because
we do not really know how to do it. Requirements management
is not the Requirements phase of the development life cycle.
Requirements management is a continuous process and this is the
area most 'ripe' for anthropological aid.

Organisations have large quantities of deployed software.
HOW are we ever to acquire the requirements from them, from
the software already deployed? We know of a case where the
programmers did not like a certain management decision so they
decided to “ show management how things really work.” They all
left, taking much of the software and all of the knowledge of how
it worked, with them. The salaries of the people who worked
for this organisation were quite complex. No one, other than the
programmers (and the software) knew how to compute pay. There
was total dependency of the organisation on this small group of
workers (tens, out of tens of thousands in the entire organisation).
Clearly, had they such a process, fully documented of course, for
ascertaining the requirements, the subsequent blackmail could not
have occurred.

Development

All existing source code must be stored for Enterprise access,
using a Software Configuration Management system or some
derivative model. Access to this should be limited in a way that
is acceptable to corporate needs, project needs and development
staff [2]. All source modules accessed for update must be accessed
only through the SCM/EAM system. Such access, both check-in and
checkout must be logged by the system and controlled by project
management. All new code modules must be created in a manner
that project management retains control over naming conventions.
Use of new tools must be checked by the authorised role in
the organisation. Use of un-approved tools should not trivially
permitted.

EAM-Enterprise Asset Management

[image:]

Figure 2: A possible product management model.

Basic Software configuration Management is deficient and the
clearest proof of this was the effort demanded to implement it. Not
technically, almost any place can buy a Commercial Off-The-Shelf
system from myriad suppliers. Some have acceptable performance.
These systems store existing files in a manner which is difficult to
access and save the differences between the versions of each file.
However, programmers do not like inhibitions; it bothers their
creativity, which is what they are being paid for. We need a more
advanced concept. We need to directly link files of code with other
programming objects. We are starting to see some of this. All of
these need to be taken into account for the project to compile into a
working system. Many if not most, programming systems are either
already doing this or are moving towards this state. Additionally, we
need to add to this all of the word processing files, presentations
and other tools' files which form parts of the development project.
SCM tools were not designed for this level of multi-dimensional
linkages. They were designed to store text files (Figure 2).

There are two problems. First is that systems' development
technologies have really progressed much faster than the tools; and
hence are really not being used as their designers intended. The
second is that even if we solve the first, they are frequently viewed
by developers as impairing the development process rather than
enhancing it. What is the solution to this conundrum? We need a
model. The Enterprise Asset Model needs to provide “ natural” links
between the development objects and their management needs.

Testing

The time has come to really implement system testing
techniques. Lawsuits from unplanned downstream impact will
kill you. Besides, pay-back is so immediate and obvious that there
should not really be a need to talk about it. The author was sitting
on an aeroplane flying between two cities in the United States,
when I noticed that the gentleman sitting next to me was looking at
the kinds of documents that only this profession creates. We began
talking. It turned out he was the “ ultimate” IT manager for one of
the very large banks. He told me the following story

They completed a conversion of their mortgage system. It
had completed absolutely on budget and on schedule. They were
very happy and very proud. While monitoring the system, as if by
appointment, a client walked in to a branch and asked to pay four
years in advance on the mortgage account. The system accepted
the payment with no problems. Handshakes, Applause, Euphoria!
About two weeks later, the same client telephoned and asked to
have a printout of the account balance. The command was entered
and the whole system crashed.

They had converted the code correctly but there was a mess in
the tables. Almost the whole project had to be redone because what
had been done was now realised to be incorrect!

Testing is no longer a choice. It is a survival imperative. It is
also expensive and technically very difficult. The choice is corporate
death. Not a very good choice, but we have been through that before.

Standardisation

It does not really matter which set of standards you use. You
may decide upon Software Engineering Institute's CMM or on
International Standards Organisation's ISO 9000” or on Bootstrap
or Trillium [3]

 or SPICE or on anything else which you deem suitable. You must
now begin to think in terms of being able to repeat your successes
and avoid future iterations of failures. Whatever you do decide to
use, we suggest that you look at the following.

A. Obtain commitment by senior management.

B. Establish an Impact and Improvement Council with
director level participation.

C. Obtain management participation.

D. Secure team participation.

E. Obtain individual involvement.

F. Establish system/product/process improvement teams,
with clear representatives of everyone involved.

G. Develop and direct information and software supplier
involvement activities.

H. Establish the systems quality assurance activity with very
clear long-range quality strategy and short-range quality plans.

I. Establish recognition and reward system.

J. Establish absolutely clear lines of authority.

Exposing Maintenance Complexities

An anthropological study of information systems' maintenance
would be viewed as corporate insanity. Yet this is what we are
attempting here. Maintenance does not necessarily change
functionality, but it may change a great deal. One type of maintenance
is reverse engineering, which (by definition) should not change
functionality, but rather re-documents requirements based upon
the base lined operational system [4]. Function Point Analysis
attempts to quantify functional changes in order to relate them to a
percentage of design changes through code, testing etc. If the user
requests functional changes, the same methods used to size new
work apply with additional guidance that deleted functions add to
the maintenance project (though they subtract from the baseline
assessment).

Architecture and design analysis should be conducted to
determine design changes. Correlation should be made to bidirectionally
map between functional changes and design changes.
Optimistically, a Requirements Trace Matrix (RTM) should be
updated with each Change Directive (along with other base lined
documents and specifications under configuration management.)
This baseline update should provide accurate data for future change
analysis sizing and pricing. Both application size and complexity
impact corrective maintenance costs. How can one quickly and
indisputably measure applications as impacting corrective
maintenance costs?

Complexity

The term “ complexity” needs to be treated very carefully. Often,
all that is meant by complex is “ poor structure” - i.e. the solution
structure does not match well with the problem structure. Clearly,
poor structure is the supplier's “ fault” and it should be “ factored
out” in cross-project or cross-organisational comparisons as poor
structure will make itself visible through poor productivity [5]. A
well-structured solution is likely to cost less to fix and to enhance
than a poorly structured one. However, all measurements must be
used in the correct context to attain maximum usefulness.

Algorithmic complexity is an additional issue. The most important
cost driver concerning algorithmically complex software lies in its
verification and validation. When regression-testing techniques
are correctly applied, this may be easier and less expensive than
is the norm for business/commercial software. If documentation is
of poor quality (an unfortunate norm) understanding the software
may be time consuming [6]. Alternatively, complexity may be used
as a synonym for “ magnitude.” Accounting for inter-relationships'
complexity between data files and entity types is liable to lead to
counting the same item twice.

The final complexity type is that which results from a
mismatch between the application and the desired qualitative
and performance requirements particularly with the operational
platform (or the operational environment). For example, delivering
a fault-tolerant application, serving thousands of users, with subsecond
response time and 7x24 operations, is inherently more
complex on a non-redundant platform, than delivering the same
application using a platform designed for this. Not because there
is anything necessarily wrong with this platform but because
that is not what it was designed for. The correct way to deal with
this complexity is to evaluate Critical Success Factors (CSF) for
acceptable performance ranges, assess likely performance of the
proposed solution and assess impacts and costs of each fix on each
of the CSF. Application or suite complexity is not a controlling factor
that matters, but rather complexity of the flaw being addressed by
corrective maintenance. Development of mutual understanding
between all people and organisations in the Acquisition loop (i.e.,
customers and suppliers) is a critical corporate-anthropological
function.

The number, size and scope of maintenance corrections are
actually functions of the quality of the development process (i.e.,
execution of each phase of the systems development life cycle).
Impacts of each “ flaw” on a running system are exponentially
greater the earlier in the development cycle that they occurred.

Cost of Repair

Five factors combine to determine the cost of repair of a
particular flaw:

A. Labour cost.

B. Size.

C. Complexity

D. Range.

E. Domain.

Labour cost varies with the number of staff-hours and the
required skill sets needed to repair a problem. To this must be
added all of the expenses (both direct and indirect) of detection,
identification, analysis and remediation and, of course, change
management. To this one should add the business costs outside
the system. These include reruns, data adjustments, client and
user support costs, internal costs, etc. An outsourcing environment
visually enhances all of these latter issues [7]. Once a problem has
been detected, the size of the flaw must be analysed. Only then can
the complexity of the flaw's repair be considered.

The range of the correction is determined by the quantity of
applications affected by the flaw. The domain of the flaw refers to
whether the correction affects other systems or business processes.
What may first appear to be a minor computation flaw may develop
into business process re-engineering, altering product lines carried
by multiple distribution centres in a region with a multimillion
dollar price tag result.

A Case Study

A good case in point is the description of the Patriot missile
system, described by section 5.8, on pages 64 through 68 [?3]. Mr.
Stein said on page 59, “ keep one's eye on the forest when dealing
with details in the trees” . At the end of a process of “ Defense Systems
Analysis” , one must ask whether lives have been saved. Mr. Stein
describes the process of upgrading the Patriot Missile system to
deal with Scud missiles, from 1979, finally culminating in the PACII
upgrade, just prior to the First Gulf War in 1991. Twelve years
of effort. Unfortunately, Mr. Stein does not provide the end of this
useful and interesting story. What was the result of this 12-yearupgrade-process?
That, after all, must be the final test. DID THE
SYSTEM FUNCTION AS PLANNED? Did it save lives?

Helmuth von Moltke the Elder, Germany's military leader in WW
I, said, “ no plan of operations extends with any certainty beyond
the first contact with the main hostile force.” I opine that a similar
statement is applicable to weapons' systems, whether defensive or
offensive. In the Gulf War, the Patriot system was installed in both
Israel and In Saudi Arabia. (By the way, the system was “ sold” to
Israelis as an anti-aircraft system that had been specially modified
for anti-missile, which Mr. Stein disagrees with.) During the War, 39
Scud missiles were fired at Israel. The Patriot system intercepted
exactly zero incoming Scuds. In one case, there was estimated to
be a ten percent chance that a missile's course was affected by the
Patriot. Falling Patriot Missiles caused more economic damage
than Scuds. (I was a senior Defense Systems Analyst at the time,
specializing in quality and reliability.)

The system was a total failure, bordering on disaster; after 12
years of development to upgrade an existing system. This is rather
beyond disappointment. Bottom line message: in Defence Systems
Analysis, if you do not receive real data from the actual war situation,
you still know nothing conclusive about your system. “ War stories”
MUST come from war. It is my belief that had this process been
accompanied by a proper, professional anthropological study, this
disaster could have been avoided.

References

1. Vogt, Edwards E (1995) The nature of work in 2010. Telecommunications,
USA.

2. 	Bryen Stephen D (2015) Technology security and national power:
winners and losers. Transaction Publishers, New Jersey, USA, p. 328.

3. 	 Trillium (1994) Model for telecom product development & support
process capability. Bell Canada, Montreal, Canada.

4. 	Ben Menachem Mordechai (1994) Software configuration management
guidebook. McGraw Hill.

5. 	 Delaney William P (2015) Perspectives on defense systems analysis. MIT
Lincoln Laboratory Series MIT Press, Massachusetts, USA.

6. Harper, Richard, Rodden T, Rogers Y, Sellen A (2008) Being human:
human-computer interaction in the year 2020. Microsoft Research, p. 98.

7. 	 Rzevski, George, Skobelev P (2014) Managing complexity. WIT Press,
Ashurst, UK.

OEBPS/Images/fig1.jpg
Examine Process

Packaging|Test
Configuration management _Baselines Verify
Code
: | Bridging
est scripts result|

OEBPS/Images/fig2.jpg

OEBPS/Images/tab1.jpg
Impossible Manu fachuring

Impossible Cortsumption

Impossible Valuation

Infirmation goods ar produce
and distributed te thovsands of points
nstantly, 2F*2c0 cost” irpossitle
ith nzditional o035

Crzcar sell 7 give the roduct
anay awmersble times and sl
beinab sk pessession and nwne s,

Wespend enozmous amourt:

“mency ot praduction and

Taintenance, kit de no~know
how zovalue it

OEBPS/Images/logo.jpg
Archaeology & Anthropology:

CRIMSON PUBLISHERS
Open Access

Wings to the Research

y
ISSN: 2577-1949 Review Article

OEBPS/Images/img.jpg

OEBPS/Misc/page-template.xpgt

		

		
		

		

		
		

		

		
		

OEBPS/Images/cover.jpg
Anthropological Analysis of
Technology Assets Change
Paradigm Support

CRI SONpublishers

